Citation: |
[1] |
M. Aharon, Michael Elad and A. Bruckstein, K-SVD: Design of dictionaries for sparse representation, IEEE Transactions on Image Processing, (2005), pages 9-12.doi: 10.1109/TSP.2006.881199. |
[2] |
Michal Aharon, Michael Elad and Alfred Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54 (2006), 4311-4322.doi: 10.1109/TSP.2006.881199. |
[3] |
C. V. Angelino, E. Debreuve and M. Barlaud, et al, Confidence-based denoising relying on a transformation-invariant, robust patch similarity exploring ways to improve patch synchronous summation, In "International Conference on Imaging Theory and Applications," 2011. |
[4] |
A. J. Bell and T. J. Sejnowski, The independent components of natural scenes are edge filters, Vision Research, 37 (1997), 3327-3338.doi: 10.1016/S0042-6989(97)00121-1. |
[5] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling Simulation, 4 (2005), 490-530.doi: 10.1137/040616024. |
[6] |
A. Buades, M. Lebrun and J. M. Morel, Implementation of the "non-local bayes'' image denoising algorithm, Image Processing On Line (http:www.ipol.im), 2012, 1-42.http://dx.doi.org/10.5201/ipol.2013.16 |
[7] |
J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8 (1986), 679-698.doi: 10.1109/TPAMI.1986.4767851. |
[8] |
P. Chatterjee and P. Milanfar, Patch-based near-optimal image denoising, IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 21 (2011), 1635-1649.doi: 10.1109/TIP.2011.2172799. |
[9] |
S. F. Cotter, R. Adler, R. D. Rao and K. Kreutz-Delgado, Forward sequential algorithms for best basis selection, In "Vision, Image and Signal Processing, IEE Proceedings," 146 (1999), 235-244.doi: 10.1049/ip-vis:19990445. |
[10] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on Image Processing, 16 (2007), 2080-2095.doi: 10.1109/TIP.2007.901238. |
[11] |
A. Delorme and Makeig S, Eeglab: An open source toolbox for analysis of single-trial eeg dynamics, Journal of Neuroscience Methods, 134 (2004), 9-21.doi: 10.1016/j.jneumeth.2003.10.009. |
[12] |
A. Efros and T. Leung, Texture synthesis by non parametric sampling, In "Proc. Int. Conf. Computer Vision," 2 (1999), 1033-1038.doi: 10.1109/ICCV.1999.790383. |
[13] |
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, Image Processing, IEEE Transactions on, 15 (2006), 3736-3745.doi: 10.1109/TIP.2006.881969. |
[14] |
A. Foi and G. Boracchi, Foveated self-similarity in nonlocal image filtering, In "IS&T/SPIE Electronic Imaging," pages 829110-829110. International Society for Optics and Photonics, 2012.doi: 10.1117/12.912217. |
[15] |
S. Geman and D. Geman, Stochastic relaxation, gibbs distributions and the bayesian restoration of images, IEEE Pat. Anal. Mach. Intell., 6 (1984), 721-741. |
[16] |
S. Grewenig, S. Zimmer and J. Weickert, Rotationally invariant similarity measures for nonlocal image denoising, Journal of Visual Communication and Image Representation, 22 (2011), 117-130.doi: 10.1016/j.jvcir.2010.11.001. |
[17] |
Guillermo Sapiro Guoshen Yu, DCT image denoising: A simple and effective image denoising algorithm, Image Processing On Line, 2011. http://dx.doi.org/10.5201/ipol.2011.ys-dct. |
[18] |
David H Hubel, "Eye, Brain, and Vision," Scientific American Library New York, 1988. |
[19] |
A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Transactions on Neural Networks, 10 (1999) 626-634.doi: 10.1109/72.761722. |
[20] |
A. Hyvarinen, The fixed-point algorithm and maximum likelihood estimation for independent component analysis, Neural Processing Letters, 10 (1999), 1-5. |
[21] |
A. Hyvarinen and E. Oja, Independent component analysis: Algorithms and applications, Neural Networks, 13 (2000), 411-430.doi: 10.1016/S0893-6080(00)00026-5. |
[22] |
Z. Ji, Q. Chen, Q. S. Sun and D. S. Xia, A moment-based nonlocal-means algorithm for image denoising, Information Processing Letters, 109 (2009), 1238-1244.doi: 10.1016/j.ipl.2009.09.007. |
[23] |
I. T. Jolliffe, N. T. Trendafilov and M. Uddin, A modified principal component technique based on the Lasso, Journal of Computational and Graphical Statistics, 12 (2003), 531-547.doi: 10.1198/1061860032148. |
[24] |
M. Lebrun, M. Colom, A. Buades and JM Morel, Secrets of image denoising cuisine, Acta Numerica, 21 (2012), 475-576.doi: 10.1017/S0962492912000062. |
[25] |
A. B. Lee, K. S. Pedersen and D. Mumford, The nonlinear statistics of high-contrast patches in natural images, International Journal of Computer Vision, 54 (2003), 83-103. |
[26] |
M. S. Lewicki and T. J. Sejnowski, Learning overcomplete representations, Neural computation, 12 (2000), 337-365.doi: 10.1162/089976600300015826. |
[27] |
Y. Lou, P. Favaro, S. Soatto and A. Bertozzi, Nonlocal similarity image filtering, Image Analysis and Processing-ICIAP 2009, 5716 (2009), 62-71.doi: 10.1007/978-3-642-04146-4_9. |
[28] |
J. Mairal, F. Bach, J. Ponce and G. Sapiro, Online learning for matrix factorization and sparse coding, The Journal of Machine Learning Research, 11 (2010), 19-60. |
[29] |
J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman, Non-local sparse models for image restoration, In "Computer Vision, 2009 IEEE 12th International Conference on," pages 2272-2279. IEEE, (2009).doi: 10.1109/ICCV.2009.5459452. |
[30] |
D. Martin, C. Fowlkes, D. Tal and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, In "Proc. 8th Int'l Conf. Computer Vision," 2 (2001), 416-423.doi: 10.1109/ICCV.2001.937655. |
[31] |
Y. Meyer, "Wavelets-Algorithms and Applications," Wavelets-Algorithms and applications Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1993. |
[32] |
B. A. Olshausen, D. J. Field, et al, Sparse coding with an overcomplete basis set: A strategy employed by V1, Vision research, 37 (1997), 3311-3326.doi: 10.1016/S0042-6989(97)00169-7. |
[33] |
L. U. Perrinet, Role of homeostasis in learning sparse representations, Neural computation, 22 (2010), 1812-1836.doi: 10.1162/neco.2010.05-08-795. |
[34] |
Javier Portilla, Vasily Strela, Martin J. Wainwright and Eero P. Simoncelli, Image denoising using scale mixtures of gaussians in the wavelet domain, IEEE Trans. Image Process, 12 (2003), 1338-1351.doi: 10.1109/TIP.2003.818640. |
[35] |
W. H. Richardson, Bayesian-based iterative method of image restoration, JOSA, 62 (1972), 55-59.doi: 10.1364/JOSA.62.000055. |
[36] |
WF Sun, YH Peng and WL Hwang, Modified similarity metric for non-local means algorithm, Electronics Letters, 45 (2009), 1307-1309.doi: 10.1049/el.2009.2406. |
[37] |
L. Yaroslavsky and M. Eden, "Fundamentals of Digital Optics," Birkhäuser, Boston, 2003.doi: 10.1007/978-1-4612-0845-7. |
[38] |
G. Yu, G. Sapiro and S. Mallat, Image modeling and enhancement via structured sparse model selection, In "Image Processing (ICIP), 2010 17th IEEE International Conference on," pages 1641-1644. IEEE, (2010).doi: 10.1109/ICIP.2010.5653853. |
[39] |
G. Yu, G. Sapiro and S. Mallat, Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity, IEEE Trans. Image Process, 21 (2012), 2481-2499.doi: 10.1109/TIP.2011.2176743. |
[40] |
S. Zimmer, S. Didas and J. Weickert, A rotationally invariant block matching strategy improving image denoising with non-local means, In "Proc. 2008 International Workshop on Local and Non-Local Approximation in Image Processing," (2008). |
[41] |
T. Zito, N. Wilbert, L. Wiskott and P. Berkes, Modular toolkit for data processing (MDP): A python data processing frame work, Front. Neuroinform., 2 (2008), http://dx.doi.org/10.3389/neuro.11.008.2008. |
[42] |
D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, In "Computer Vision (ICCV), 2011 IEEE International Conference on," pages 479-486. IEEE, (2011).doi: 10.1109/ICCV.2011.6126278. |
[43] |
H. Zou, T. Hastie and R. Tibshirani, Sparse principal component analysis, Journal of Computational and Graphical Statistics, 15 (2006), 265-286.doi: 10.1198/106186006X113430. |