-
Previous Article
A conformal approach for surface inpainting
- IPI Home
- This Issue
-
Next Article
How to explore the patch space
Video stabilization of atmospheric turbulence distortion
1. | Department of Mathematics, University of California Los Angeles, Los Angeles, CA, 90095, United States, United States |
2. | School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 |
3. | Computer Science Department, University of California Los Angeles, Los Angeles, CA, 90095, United States |
References:
[1] |
L. Alvarez and L. Mazorra, Signal and image restoration using shock filters and anisotropic diffusion, SIAM Journal on Numerical Analysis, 31 (1994), 590-065.
doi: 10.1137/0731032. |
[2] |
M. Aubailly, M. A. Vorontsov, G. W. Carhat and M. T. Valley, Automated video enhancement from a stream of atmospherically-distorted images: The lucky-region fusion approach, In "Proceedings of SPIE," volume 7463, (2009).
doi: 10.1117/12.828332. |
[3] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 4 (2005), 490-530.
doi: 10.1137/040616024. |
[4] |
A. Buades, B. Coll and J.M. Morel, Nonlocal image and movie denoising, International Journal of Computer Vision, 76 (2008), 123-139. |
[5] |
K. Buskila, S. Towito, E. Shmuel, R. Levi, N. Kopeika, K. Krapels, R. Driggers, R. Vollmerhausen and C. Halford, Atmospheric modulation transfer function in the infrared, Applied Optics, 43 (2004), 471-482.
doi: 10.1364/AO.43.000471. |
[6] |
J. Calder, A. Mansouri and A. Yezzi, Image sharpening via sobolev gradient flows, SIAM Journal on Imaging Sciences, 3 (2010), 981-1014.
doi: 10.1137/090771260. |
[7] |
J. Caviedes and S. Gurbuz, No-reference sharpness metric based on local edge kurtosis, In "IEEE Int. Conf. on Image Processing," 3 (2002), 53-56.
doi: 10.1109/ICIP.2002.1038901. |
[8] |
L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[9] |
D. Frakes, J. Monaco and M. Smith, Suppression of atmospheric turbulence in video using an adaptive control grid interpolation approach, In "IEEE Int. Conf. on Acoustics, Speech and Signal processing (ICASSP)," 3 (2001), 1881-1884.
doi: 10.1109/ICASSP.2001.941311. |
[10] |
D. L. Fried, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures, Journal of the Optical Society of America, 56 (1966), 1372-1379.
doi: 10.1364/JOSA.56.001372. |
[11] |
S. Gepshtein, A. Shtainman, B. Fishbain and L. P. Yaroslavsky, Restoration of atmospheric turbulent video containing real motion using rank filtering and elastic image registration, In "Proceeding of the Eusipco," 2004. |
[12] |
J. Gilles and S. Osher, "Fried Deconvolution," UCLA CAM Report 11-62, 2011.
doi: 10.1117/12.917234. |
[13] |
P. Hartman, "Ordinary Differential Equations," Corrected reprint. S. M. Hartman, Baltimore, Md., 1973. |
[14] |
M. Hirsch, S. Sra, B. Scholkopf and S. Harmeling, Efficient filter flow for space-variant multiframe blind deconvolution, IEEE Computer Vision and Pattern Recognition (CVPR), pages 607-614, (2010).
doi: 10.1109/CVPR.2010.5540158. |
[15] |
R. E. Hufnagel and N. R. Stanley, Modulation transfer function associated with image transmission through turbulence media, Journal of the Optical Society of America, 54 (1964), 52-60.
doi: 10.1364/JOSA.54.000052. |
[16] |
J.Gilles, T. Dagobert and C. De Franchis, Atmospheric turbulence restoration by diffeomorphism image registration and blind deconvolution, In "Advanced Concepts for Intelligent Vision Systems" (ACIVS), Oct 2008. |
[17] |
D. Li, R. Mersereau and S. Simske, Atmospheric turbulence degraded image restoration using principal components analysis, IEEE Geoscience and Remote Sensing Letters, 4 (2007), 340-344.
doi: 10.1109/LGRS.2007.895691. |
[18] |
D. Li and S. Simske, Atmospheric turbulence degraded-image restoration by kurtosis minimization, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 244-247. |
[19] |
Y. Mao and J. Gilles, Non rigid geometric distortions correction - application to atmospheric turbulence stabilization, Inverse Problems and Imaging, 6 (2012), 531-546.
doi: 10.3934/ipi.2012.6.531. |
[20] |
A. Marquina, Nonlinear inverse scale space methods for total variation blind deconvolution, SIAM Journal on Imaging Sciences, 2 (2009), 64-83.
doi: 10.1137/080724289. |
[21] |
M. Micheli, Y. Lou, S. Soatto and Andrea L. Bertozzi, A linear systems approach to imaging through turbulence, Journal of Mathematical Imaging and Vision July 2013.
doi: 10.1007/s10851-012-0410-7. |
[22] |
A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing," 2nd Edition Prentice Hall, Upper Saddle River, NJ, 1999. |
[23] |
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.
doi: 10.1109/34.56205. |
[24] |
J. Ricklin and F. Davidson, Atmospheric turbulence effects on a partially coherent gaussian beam: implications for free-space laser communication, Journal of the Optical Society of America A, pages 1794-1802, (2002).
doi: 10.1364/JOSAA.19.001794. |
[25] |
M. Roggemann and B. Welsh, "Imaging Through Turbulence," CRC Press, Boca Raton, FL, 1996.
doi: 10.1117/1.601043. |
[26] |
M. Shimizu, S. Yoshimura, M. Tanaka and M. Okutomi, Super-resolution from image sequence under influence of hot-air optical turbulence, In "IEEE Conference on Computer Vision and Pattern Recognition" (CVPR), pages 1-8, (2008). |
[27] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours, International Journal of Computer Vision, 73 (2007), 345-366. |
[28] |
D. Tofsted, Reanalysis of turbulence effects on short-exposure passive imaging, Optical Engineering, 50 (2011), 016001.
doi: 10.1117/1.3532999. |
[29] |
M. A. Vorontsov and G. W. Carhart, Anisoplanatic imaging through turbulent media: Image recovery by local information fusion from a set of short-exposure images, Journal of the Optical Society of America A, 18 (2001), 1312-1324.
doi: 10.1364/JOSAA.18.001312. |
[30] |
P. Zhang, W. Gong, X. Shen and S. Han, Correlated imaging through atmospheric turbulence, Physical Review A, 82 (2010), 033817.
doi: 10.1103/PhysRevA.82.033817. |
[31] |
X. Zhu and P. Milanfar, Image reconstruction from videos distorted by atmospheric turbulence, In "SPIE Electronic Imaging, Conference on Visual Information Processing and Communication," 2010.
doi: 10.1117/12.840127. |
[32] |
X. Zhu and P. Milanfar, Stabilizing and deblurring atmospheric turbulence, In "IEEE Int. Conf. on Computational Photography (ICCP)," pages 1-8, (2011).
doi: 10.1109/ICCPHOT.2011.5753122. |
[33] |
X. Zhu and P. Milanfar, Removing atmospheric turbulence via space-invariant deconvolution, IEEE Trans. on Pattern Analysis and Machine Intelligence, 35 (2012), 157-170. |
show all references
References:
[1] |
L. Alvarez and L. Mazorra, Signal and image restoration using shock filters and anisotropic diffusion, SIAM Journal on Numerical Analysis, 31 (1994), 590-065.
doi: 10.1137/0731032. |
[2] |
M. Aubailly, M. A. Vorontsov, G. W. Carhat and M. T. Valley, Automated video enhancement from a stream of atmospherically-distorted images: The lucky-region fusion approach, In "Proceedings of SPIE," volume 7463, (2009).
doi: 10.1117/12.828332. |
[3] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 4 (2005), 490-530.
doi: 10.1137/040616024. |
[4] |
A. Buades, B. Coll and J.M. Morel, Nonlocal image and movie denoising, International Journal of Computer Vision, 76 (2008), 123-139. |
[5] |
K. Buskila, S. Towito, E. Shmuel, R. Levi, N. Kopeika, K. Krapels, R. Driggers, R. Vollmerhausen and C. Halford, Atmospheric modulation transfer function in the infrared, Applied Optics, 43 (2004), 471-482.
doi: 10.1364/AO.43.000471. |
[6] |
J. Calder, A. Mansouri and A. Yezzi, Image sharpening via sobolev gradient flows, SIAM Journal on Imaging Sciences, 3 (2010), 981-1014.
doi: 10.1137/090771260. |
[7] |
J. Caviedes and S. Gurbuz, No-reference sharpness metric based on local edge kurtosis, In "IEEE Int. Conf. on Image Processing," 3 (2002), 53-56.
doi: 10.1109/ICIP.2002.1038901. |
[8] |
L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[9] |
D. Frakes, J. Monaco and M. Smith, Suppression of atmospheric turbulence in video using an adaptive control grid interpolation approach, In "IEEE Int. Conf. on Acoustics, Speech and Signal processing (ICASSP)," 3 (2001), 1881-1884.
doi: 10.1109/ICASSP.2001.941311. |
[10] |
D. L. Fried, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures, Journal of the Optical Society of America, 56 (1966), 1372-1379.
doi: 10.1364/JOSA.56.001372. |
[11] |
S. Gepshtein, A. Shtainman, B. Fishbain and L. P. Yaroslavsky, Restoration of atmospheric turbulent video containing real motion using rank filtering and elastic image registration, In "Proceeding of the Eusipco," 2004. |
[12] |
J. Gilles and S. Osher, "Fried Deconvolution," UCLA CAM Report 11-62, 2011.
doi: 10.1117/12.917234. |
[13] |
P. Hartman, "Ordinary Differential Equations," Corrected reprint. S. M. Hartman, Baltimore, Md., 1973. |
[14] |
M. Hirsch, S. Sra, B. Scholkopf and S. Harmeling, Efficient filter flow for space-variant multiframe blind deconvolution, IEEE Computer Vision and Pattern Recognition (CVPR), pages 607-614, (2010).
doi: 10.1109/CVPR.2010.5540158. |
[15] |
R. E. Hufnagel and N. R. Stanley, Modulation transfer function associated with image transmission through turbulence media, Journal of the Optical Society of America, 54 (1964), 52-60.
doi: 10.1364/JOSA.54.000052. |
[16] |
J.Gilles, T. Dagobert and C. De Franchis, Atmospheric turbulence restoration by diffeomorphism image registration and blind deconvolution, In "Advanced Concepts for Intelligent Vision Systems" (ACIVS), Oct 2008. |
[17] |
D. Li, R. Mersereau and S. Simske, Atmospheric turbulence degraded image restoration using principal components analysis, IEEE Geoscience and Remote Sensing Letters, 4 (2007), 340-344.
doi: 10.1109/LGRS.2007.895691. |
[18] |
D. Li and S. Simske, Atmospheric turbulence degraded-image restoration by kurtosis minimization, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 244-247. |
[19] |
Y. Mao and J. Gilles, Non rigid geometric distortions correction - application to atmospheric turbulence stabilization, Inverse Problems and Imaging, 6 (2012), 531-546.
doi: 10.3934/ipi.2012.6.531. |
[20] |
A. Marquina, Nonlinear inverse scale space methods for total variation blind deconvolution, SIAM Journal on Imaging Sciences, 2 (2009), 64-83.
doi: 10.1137/080724289. |
[21] |
M. Micheli, Y. Lou, S. Soatto and Andrea L. Bertozzi, A linear systems approach to imaging through turbulence, Journal of Mathematical Imaging and Vision July 2013.
doi: 10.1007/s10851-012-0410-7. |
[22] |
A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing," 2nd Edition Prentice Hall, Upper Saddle River, NJ, 1999. |
[23] |
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.
doi: 10.1109/34.56205. |
[24] |
J. Ricklin and F. Davidson, Atmospheric turbulence effects on a partially coherent gaussian beam: implications for free-space laser communication, Journal of the Optical Society of America A, pages 1794-1802, (2002).
doi: 10.1364/JOSAA.19.001794. |
[25] |
M. Roggemann and B. Welsh, "Imaging Through Turbulence," CRC Press, Boca Raton, FL, 1996.
doi: 10.1117/1.601043. |
[26] |
M. Shimizu, S. Yoshimura, M. Tanaka and M. Okutomi, Super-resolution from image sequence under influence of hot-air optical turbulence, In "IEEE Conference on Computer Vision and Pattern Recognition" (CVPR), pages 1-8, (2008). |
[27] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours, International Journal of Computer Vision, 73 (2007), 345-366. |
[28] |
D. Tofsted, Reanalysis of turbulence effects on short-exposure passive imaging, Optical Engineering, 50 (2011), 016001.
doi: 10.1117/1.3532999. |
[29] |
M. A. Vorontsov and G. W. Carhart, Anisoplanatic imaging through turbulent media: Image recovery by local information fusion from a set of short-exposure images, Journal of the Optical Society of America A, 18 (2001), 1312-1324.
doi: 10.1364/JOSAA.18.001312. |
[30] |
P. Zhang, W. Gong, X. Shen and S. Han, Correlated imaging through atmospheric turbulence, Physical Review A, 82 (2010), 033817.
doi: 10.1103/PhysRevA.82.033817. |
[31] |
X. Zhu and P. Milanfar, Image reconstruction from videos distorted by atmospheric turbulence, In "SPIE Electronic Imaging, Conference on Visual Information Processing and Communication," 2010.
doi: 10.1117/12.840127. |
[32] |
X. Zhu and P. Milanfar, Stabilizing and deblurring atmospheric turbulence, In "IEEE Int. Conf. on Computational Photography (ICCP)," pages 1-8, (2011).
doi: 10.1109/ICCPHOT.2011.5753122. |
[33] |
X. Zhu and P. Milanfar, Removing atmospheric turbulence via space-invariant deconvolution, IEEE Trans. on Pattern Analysis and Machine Intelligence, 35 (2012), 157-170. |
[1] |
Zhiguang Zhang, Qiang Liu, Tianling Gao. A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. Inverse Problems and Imaging, 2021, 15 (6) : 1451-1469. doi: 10.3934/ipi.2021018 |
[2] |
Ying Zhang, Xuhua Ren, Bryan Alexander Clifford, Qian Wang, Xiaoqun Zhang. Image fusion network for dual-modal restoration. Inverse Problems and Imaging, 2021, 15 (6) : 1409-1419. doi: 10.3934/ipi.2021067 |
[3] |
Ying Wen, Jiebao Sun, Zhichang Guo. A new anisotropic fourth-order diffusion equation model based on image features for image denoising. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022004 |
[4] |
Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030 |
[5] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[6] |
Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157 |
[7] |
Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1233-1249. doi: 10.3934/dcdss.2019085 |
[8] |
Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007 |
[9] |
Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems and Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733 |
[10] |
Yong Zheng Ong, Haizhao Yang. Generative imaging and image processing via generative encoder. Inverse Problems and Imaging, 2022, 16 (3) : 525-545. doi: 10.3934/ipi.2021060 |
[11] |
Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial and Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181 |
[12] |
Shenglong Hu, Zheng-Hai Huang, Hong-Yan Ni, Liqun Qi. Positive definiteness of Diffusion Kurtosis Imaging. Inverse Problems and Imaging, 2012, 6 (1) : 57-75. doi: 10.3934/ipi.2012.6.57 |
[13] |
Antoni Buades, Bartomeu Coll, Jose-Luis Lisani, Catalina Sbert. Conditional image diffusion. Inverse Problems and Imaging, 2007, 1 (4) : 593-608. doi: 10.3934/ipi.2007.1.593 |
[14] |
Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems and Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010 |
[15] |
Wanyou Cheng, Zixin Chen, Donghui Li. Nomonotone spectral gradient method for sparse recovery. Inverse Problems and Imaging, 2015, 9 (3) : 815-833. doi: 10.3934/ipi.2015.9.815 |
[16] |
Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69 |
[17] |
Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021, 8 (2) : 165-181. doi: 10.3934/jcd.2021008 |
[18] |
Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099 |
[19] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[20] |
Giacomo Frassoldati, Luca Zanni, Gaetano Zanghirati. New adaptive stepsize selections in gradient methods. Journal of Industrial and Management Optimization, 2008, 4 (2) : 299-312. doi: 10.3934/jimo.2008.4.299 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]