-
Previous Article
A conformal approach for surface inpainting
- IPI Home
- This Issue
-
Next Article
How to explore the patch space
Video stabilization of atmospheric turbulence distortion
1. | Department of Mathematics, University of California Los Angeles, Los Angeles, CA, 90095, United States, United States |
2. | School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 |
3. | Computer Science Department, University of California Los Angeles, Los Angeles, CA, 90095, United States |
References:
[1] |
L. Alvarez and L. Mazorra, Signal and image restoration using shock filters and anisotropic diffusion,, SIAM Journal on Numerical Analysis, 31 (1994), 590.
doi: 10.1137/0731032. |
[2] |
M. Aubailly, M. A. Vorontsov, G. W. Carhat and M. T. Valley, Automated video enhancement from a stream of atmospherically-distorted images: The lucky-region fusion approach,, In, (2009).
doi: 10.1117/12.828332. |
[3] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Modeling and Simulation, 4 (2005), 490.
doi: 10.1137/040616024. |
[4] |
A. Buades, B. Coll and J.M. Morel, Nonlocal image and movie denoising,, International Journal of Computer Vision, 76 (2008), 123. Google Scholar |
[5] |
K. Buskila, S. Towito, E. Shmuel, R. Levi, N. Kopeika, K. Krapels, R. Driggers, R. Vollmerhausen and C. Halford, Atmospheric modulation transfer function in the infrared,, Applied Optics, 43 (2004), 471.
doi: 10.1364/AO.43.000471. |
[6] |
J. Calder, A. Mansouri and A. Yezzi, Image sharpening via sobolev gradient flows,, SIAM Journal on Imaging Sciences, 3 (2010), 981.
doi: 10.1137/090771260. |
[7] |
J. Caviedes and S. Gurbuz, No-reference sharpness metric based on local edge kurtosis,, In, 3 (2002), 53.
doi: 10.1109/ICIP.2002.1038901. |
[8] |
L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, (1998).
|
[9] |
D. Frakes, J. Monaco and M. Smith, Suppression of atmospheric turbulence in video using an adaptive control grid interpolation approach,, In, 3 (2001), 1881.
doi: 10.1109/ICASSP.2001.941311. |
[10] |
D. L. Fried, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,, Journal of the Optical Society of America, 56 (1966), 1372.
doi: 10.1364/JOSA.56.001372. |
[11] |
S. Gepshtein, A. Shtainman, B. Fishbain and L. P. Yaroslavsky, Restoration of atmospheric turbulent video containing real motion using rank filtering and elastic image registration,, In, (2004). Google Scholar |
[12] |
J. Gilles and S. Osher, "Fried Deconvolution,", UCLA CAM Report 11-62, (2011), 11.
doi: 10.1117/12.917234. |
[13] |
P. Hartman, "Ordinary Differential Equations,", Corrected reprint. S. M. Hartman, (1973).
|
[14] |
M. Hirsch, S. Sra, B. Scholkopf and S. Harmeling, Efficient filter flow for space-variant multiframe blind deconvolution,, IEEE Computer Vision and Pattern Recognition (CVPR), (2010), 607.
doi: 10.1109/CVPR.2010.5540158. |
[15] |
R. E. Hufnagel and N. R. Stanley, Modulation transfer function associated with image transmission through turbulence media,, Journal of the Optical Society of America, 54 (1964), 52.
doi: 10.1364/JOSA.54.000052. |
[16] |
J.Gilles, T. Dagobert and C. De Franchis, Atmospheric turbulence restoration by diffeomorphism image registration and blind deconvolution,, In, (2008). Google Scholar |
[17] |
D. Li, R. Mersereau and S. Simske, Atmospheric turbulence degraded image restoration using principal components analysis,, IEEE Geoscience and Remote Sensing Letters, 4 (2007), 340.
doi: 10.1109/LGRS.2007.895691. |
[18] |
D. Li and S. Simske, Atmospheric turbulence degraded-image restoration by kurtosis minimization,, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 244. Google Scholar |
[19] |
Y. Mao and J. Gilles, Non rigid geometric distortions correction - application to atmospheric turbulence stabilization,, Inverse Problems and Imaging, 6 (2012), 531.
doi: 10.3934/ipi.2012.6.531. |
[20] |
A. Marquina, Nonlinear inverse scale space methods for total variation blind deconvolution,, SIAM Journal on Imaging Sciences, 2 (2009), 64.
doi: 10.1137/080724289. |
[21] |
M. Micheli, Y. Lou, S. Soatto and Andrea L. Bertozzi, A linear systems approach to imaging through turbulence,, Journal of Mathematical Imaging and Vision July 2013., (2013).
doi: 10.1007/s10851-012-0410-7. |
[22] |
A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing," 2nd Edition, Prentice Hall, (1999). Google Scholar |
[23] |
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion,, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629.
doi: 10.1109/34.56205. |
[24] |
J. Ricklin and F. Davidson, Atmospheric turbulence effects on a partially coherent gaussian beam: implications for free-space laser communication,, Journal of the Optical Society of America A, (2002), 1794.
doi: 10.1364/JOSAA.19.001794. |
[25] |
M. Roggemann and B. Welsh, "Imaging Through Turbulence,", CRC Press, (1996).
doi: 10.1117/1.601043. |
[26] |
M. Shimizu, S. Yoshimura, M. Tanaka and M. Okutomi, Super-resolution from image sequence under influence of hot-air optical turbulence,, In, (2008), 1. Google Scholar |
[27] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, International Journal of Computer Vision, 73 (2007), 345. Google Scholar |
[28] |
D. Tofsted, Reanalysis of turbulence effects on short-exposure passive imaging,, Optical Engineering, 50 (2011).
doi: 10.1117/1.3532999. |
[29] |
M. A. Vorontsov and G. W. Carhart, Anisoplanatic imaging through turbulent media: Image recovery by local information fusion from a set of short-exposure images,, Journal of the Optical Society of America A, 18 (2001), 1312.
doi: 10.1364/JOSAA.18.001312. |
[30] |
P. Zhang, W. Gong, X. Shen and S. Han, Correlated imaging through atmospheric turbulence,, Physical Review A, 82 (2010).
doi: 10.1103/PhysRevA.82.033817. |
[31] |
X. Zhu and P. Milanfar, Image reconstruction from videos distorted by atmospheric turbulence,, In, (2010).
doi: 10.1117/12.840127. |
[32] |
X. Zhu and P. Milanfar, Stabilizing and deblurring atmospheric turbulence,, In, (2011), 1.
doi: 10.1109/ICCPHOT.2011.5753122. |
[33] |
X. Zhu and P. Milanfar, Removing atmospheric turbulence via space-invariant deconvolution,, IEEE Trans. on Pattern Analysis and Machine Intelligence, 35 (2012), 157. Google Scholar |
show all references
References:
[1] |
L. Alvarez and L. Mazorra, Signal and image restoration using shock filters and anisotropic diffusion,, SIAM Journal on Numerical Analysis, 31 (1994), 590.
doi: 10.1137/0731032. |
[2] |
M. Aubailly, M. A. Vorontsov, G. W. Carhat and M. T. Valley, Automated video enhancement from a stream of atmospherically-distorted images: The lucky-region fusion approach,, In, (2009).
doi: 10.1117/12.828332. |
[3] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Modeling and Simulation, 4 (2005), 490.
doi: 10.1137/040616024. |
[4] |
A. Buades, B. Coll and J.M. Morel, Nonlocal image and movie denoising,, International Journal of Computer Vision, 76 (2008), 123. Google Scholar |
[5] |
K. Buskila, S. Towito, E. Shmuel, R. Levi, N. Kopeika, K. Krapels, R. Driggers, R. Vollmerhausen and C. Halford, Atmospheric modulation transfer function in the infrared,, Applied Optics, 43 (2004), 471.
doi: 10.1364/AO.43.000471. |
[6] |
J. Calder, A. Mansouri and A. Yezzi, Image sharpening via sobolev gradient flows,, SIAM Journal on Imaging Sciences, 3 (2010), 981.
doi: 10.1137/090771260. |
[7] |
J. Caviedes and S. Gurbuz, No-reference sharpness metric based on local edge kurtosis,, In, 3 (2002), 53.
doi: 10.1109/ICIP.2002.1038901. |
[8] |
L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, (1998).
|
[9] |
D. Frakes, J. Monaco and M. Smith, Suppression of atmospheric turbulence in video using an adaptive control grid interpolation approach,, In, 3 (2001), 1881.
doi: 10.1109/ICASSP.2001.941311. |
[10] |
D. L. Fried, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,, Journal of the Optical Society of America, 56 (1966), 1372.
doi: 10.1364/JOSA.56.001372. |
[11] |
S. Gepshtein, A. Shtainman, B. Fishbain and L. P. Yaroslavsky, Restoration of atmospheric turbulent video containing real motion using rank filtering and elastic image registration,, In, (2004). Google Scholar |
[12] |
J. Gilles and S. Osher, "Fried Deconvolution,", UCLA CAM Report 11-62, (2011), 11.
doi: 10.1117/12.917234. |
[13] |
P. Hartman, "Ordinary Differential Equations,", Corrected reprint. S. M. Hartman, (1973).
|
[14] |
M. Hirsch, S. Sra, B. Scholkopf and S. Harmeling, Efficient filter flow for space-variant multiframe blind deconvolution,, IEEE Computer Vision and Pattern Recognition (CVPR), (2010), 607.
doi: 10.1109/CVPR.2010.5540158. |
[15] |
R. E. Hufnagel and N. R. Stanley, Modulation transfer function associated with image transmission through turbulence media,, Journal of the Optical Society of America, 54 (1964), 52.
doi: 10.1364/JOSA.54.000052. |
[16] |
J.Gilles, T. Dagobert and C. De Franchis, Atmospheric turbulence restoration by diffeomorphism image registration and blind deconvolution,, In, (2008). Google Scholar |
[17] |
D. Li, R. Mersereau and S. Simske, Atmospheric turbulence degraded image restoration using principal components analysis,, IEEE Geoscience and Remote Sensing Letters, 4 (2007), 340.
doi: 10.1109/LGRS.2007.895691. |
[18] |
D. Li and S. Simske, Atmospheric turbulence degraded-image restoration by kurtosis minimization,, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 244. Google Scholar |
[19] |
Y. Mao and J. Gilles, Non rigid geometric distortions correction - application to atmospheric turbulence stabilization,, Inverse Problems and Imaging, 6 (2012), 531.
doi: 10.3934/ipi.2012.6.531. |
[20] |
A. Marquina, Nonlinear inverse scale space methods for total variation blind deconvolution,, SIAM Journal on Imaging Sciences, 2 (2009), 64.
doi: 10.1137/080724289. |
[21] |
M. Micheli, Y. Lou, S. Soatto and Andrea L. Bertozzi, A linear systems approach to imaging through turbulence,, Journal of Mathematical Imaging and Vision July 2013., (2013).
doi: 10.1007/s10851-012-0410-7. |
[22] |
A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing," 2nd Edition, Prentice Hall, (1999). Google Scholar |
[23] |
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion,, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629.
doi: 10.1109/34.56205. |
[24] |
J. Ricklin and F. Davidson, Atmospheric turbulence effects on a partially coherent gaussian beam: implications for free-space laser communication,, Journal of the Optical Society of America A, (2002), 1794.
doi: 10.1364/JOSAA.19.001794. |
[25] |
M. Roggemann and B. Welsh, "Imaging Through Turbulence,", CRC Press, (1996).
doi: 10.1117/1.601043. |
[26] |
M. Shimizu, S. Yoshimura, M. Tanaka and M. Okutomi, Super-resolution from image sequence under influence of hot-air optical turbulence,, In, (2008), 1. Google Scholar |
[27] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, International Journal of Computer Vision, 73 (2007), 345. Google Scholar |
[28] |
D. Tofsted, Reanalysis of turbulence effects on short-exposure passive imaging,, Optical Engineering, 50 (2011).
doi: 10.1117/1.3532999. |
[29] |
M. A. Vorontsov and G. W. Carhart, Anisoplanatic imaging through turbulent media: Image recovery by local information fusion from a set of short-exposure images,, Journal of the Optical Society of America A, 18 (2001), 1312.
doi: 10.1364/JOSAA.18.001312. |
[30] |
P. Zhang, W. Gong, X. Shen and S. Han, Correlated imaging through atmospheric turbulence,, Physical Review A, 82 (2010).
doi: 10.1103/PhysRevA.82.033817. |
[31] |
X. Zhu and P. Milanfar, Image reconstruction from videos distorted by atmospheric turbulence,, In, (2010).
doi: 10.1117/12.840127. |
[32] |
X. Zhu and P. Milanfar, Stabilizing and deblurring atmospheric turbulence,, In, (2011), 1.
doi: 10.1109/ICCPHOT.2011.5753122. |
[33] |
X. Zhu and P. Milanfar, Removing atmospheric turbulence via space-invariant deconvolution,, IEEE Trans. on Pattern Analysis and Machine Intelligence, 35 (2012), 157. Google Scholar |
[1] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[2] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[3] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[4] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[5] |
Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165 |
[6] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021002 |
[7] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[8] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[9] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[10] |
Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 |
[11] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[12] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[13] |
Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020397 |
[14] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[15] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[16] |
Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, 2021, 20 (2) : 783-799. doi: 10.3934/cpaa.2020290 |
[17] |
Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005 |
[18] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[19] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[20] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]