\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Video stabilization of atmospheric turbulence distortion

Abstract / Introduction Related Papers Cited by
  • We present a method to enhance the quality of a video sequence captured through a turbulent atmospheric medium, and give an estimate of the radiance of the distant scene, represented as a ``latent image,'' which is assumed to be static throughout the video. Due to atmospheric turbulence, temporal averaging produces a blurred version of the scene's radiance. We propose a method combining Sobolev gradient and Laplacian to stabilize the video sequence, and a latent image is further found utilizing the ``lucky region" method. The video sequence is stabilized while keeping sharp details, and the latent image shows more consistent straight edges. We analyze the well-posedness for the stabilizing PDE and the linear stability of the numerical scheme.
    Mathematics Subject Classification: Primary: 68U10; Secondary: 35B65, 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Alvarez and L. Mazorra, Signal and image restoration using shock filters and anisotropic diffusion, SIAM Journal on Numerical Analysis, 31 (1994), 590-065.doi: 10.1137/0731032.

    [2]

    M. Aubailly, M. A. Vorontsov, G. W. Carhat and M. T. Valley, Automated video enhancement from a stream of atmospherically-distorted images: The lucky-region fusion approach, In "Proceedings of SPIE," volume 7463, (2009).doi: 10.1117/12.828332.

    [3]

    A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 4 (2005), 490-530.doi: 10.1137/040616024.

    [4]

    A. Buades, B. Coll and J.M. Morel, Nonlocal image and movie denoising, International Journal of Computer Vision, 76 (2008), 123-139.

    [5]

    K. Buskila, S. Towito, E. Shmuel, R. Levi, N. Kopeika, K. Krapels, R. Driggers, R. Vollmerhausen and C. Halford, Atmospheric modulation transfer function in the infrared, Applied Optics, 43 (2004), 471-482.doi: 10.1364/AO.43.000471.

    [6]

    J. Calder, A. Mansouri and A. Yezzi, Image sharpening via sobolev gradient flows, SIAM Journal on Imaging Sciences, 3 (2010), 981-1014.doi: 10.1137/090771260.

    [7]

    J. Caviedes and S. Gurbuz, No-reference sharpness metric based on local edge kurtosis, In "IEEE Int. Conf. on Image Processing," 3 (2002), 53-56.doi: 10.1109/ICIP.2002.1038901.

    [8]

    L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

    [9]

    D. Frakes, J. Monaco and M. Smith, Suppression of atmospheric turbulence in video using an adaptive control grid interpolation approach, In "IEEE Int. Conf. on Acoustics, Speech and Signal processing (ICASSP)," 3 (2001), 1881-1884.doi: 10.1109/ICASSP.2001.941311.

    [10]

    D. L. Fried, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures, Journal of the Optical Society of America, 56 (1966), 1372-1379.doi: 10.1364/JOSA.56.001372.

    [11]

    S. Gepshtein, A. Shtainman, B. Fishbain and L. P. Yaroslavsky, Restoration of atmospheric turbulent video containing real motion using rank filtering and elastic image registration, In "Proceeding of the Eusipco," 2004.

    [12]

    J. Gilles and S. Osher, "Fried Deconvolution," UCLA CAM Report 11-62, 2011.doi: 10.1117/12.917234.

    [13]

    P. Hartman, "Ordinary Differential Equations," Corrected reprint. S. M. Hartman, Baltimore, Md., 1973.

    [14]

    M. Hirsch, S. Sra, B. Scholkopf and S. Harmeling, Efficient filter flow for space-variant multiframe blind deconvolution, IEEE Computer Vision and Pattern Recognition (CVPR), pages 607-614, (2010).doi: 10.1109/CVPR.2010.5540158.

    [15]

    R. E. Hufnagel and N. R. Stanley, Modulation transfer function associated with image transmission through turbulence media, Journal of the Optical Society of America, 54 (1964), 52-60.doi: 10.1364/JOSA.54.000052.

    [16]

    J.Gilles, T. Dagobert and C. De Franchis, Atmospheric turbulence restoration by diffeomorphism image registration and blind deconvolution, In "Advanced Concepts for Intelligent Vision Systems" (ACIVS), Oct 2008.

    [17]

    D. Li, R. Mersereau and S. Simske, Atmospheric turbulence degraded image restoration using principal components analysis, IEEE Geoscience and Remote Sensing Letters, 4 (2007), 340-344.doi: 10.1109/LGRS.2007.895691.

    [18]

    D. Li and S. Simske, Atmospheric turbulence degraded-image restoration by kurtosis minimization, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 244-247.

    [19]

    Y. Mao and J. Gilles, Non rigid geometric distortions correction - application to atmospheric turbulence stabilization, Inverse Problems and Imaging, 6 (2012), 531-546.doi: 10.3934/ipi.2012.6.531.

    [20]

    A. Marquina, Nonlinear inverse scale space methods for total variation blind deconvolution, SIAM Journal on Imaging Sciences, 2 (2009), 64-83.doi: 10.1137/080724289.

    [21]

    M. Micheli, Y. Lou, S. Soatto and Andrea L. Bertozzi, A linear systems approach to imaging through turbulence, Journal of Mathematical Imaging and Vision July 2013.doi: 10.1007/s10851-012-0410-7.

    [22]

    A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing," 2nd Edition Prentice Hall, Upper Saddle River, NJ, 1999.

    [23]

    P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.doi: 10.1109/34.56205.

    [24]

    J. Ricklin and F. Davidson, Atmospheric turbulence effects on a partially coherent gaussian beam: implications for free-space laser communication, Journal of the Optical Society of America A, pages 1794-1802, (2002).doi: 10.1364/JOSAA.19.001794.

    [25]

    M. Roggemann and B. Welsh, "Imaging Through Turbulence," CRC Press, Boca Raton, FL, 1996.doi: 10.1117/1.601043.

    [26]

    M. Shimizu, S. Yoshimura, M. Tanaka and M. Okutomi, Super-resolution from image sequence under influence of hot-air optical turbulence, In "IEEE Conference on Computer Vision and Pattern Recognition" (CVPR), pages 1-8, (2008).

    [27]

    G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours, International Journal of Computer Vision, 73 (2007), 345-366.

    [28]

    D. Tofsted, Reanalysis of turbulence effects on short-exposure passive imaging, Optical Engineering, 50 (2011), 016001.doi: 10.1117/1.3532999.

    [29]

    M. A. Vorontsov and G. W. Carhart, Anisoplanatic imaging through turbulent media: Image recovery by local information fusion from a set of short-exposure images, Journal of the Optical Society of America A, 18 (2001), 1312-1324.doi: 10.1364/JOSAA.18.001312.

    [30]

    P. Zhang, W. Gong, X. Shen and S. Han, Correlated imaging through atmospheric turbulence, Physical Review A, 82 (2010), 033817.doi: 10.1103/PhysRevA.82.033817.

    [31]

    X. Zhu and P. Milanfar, Image reconstruction from videos distorted by atmospheric turbulence, In "SPIE Electronic Imaging, Conference on Visual Information Processing and Communication," 2010.doi: 10.1117/12.840127.

    [32]

    X. Zhu and P. Milanfar, Stabilizing and deblurring atmospheric turbulence, In "IEEE Int. Conf. on Computational Photography (ICCP)," pages 1-8, (2011).doi: 10.1109/ICCPHOT.2011.5753122.

    [33]

    X. Zhu and P. Milanfar, Removing atmospheric turbulence via space-invariant deconvolution, IEEE Trans. on Pattern Analysis and Machine Intelligence, 35 (2012), 157-170.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(552) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return