August  2013, 7(3): 907-926. doi: 10.3934/ipi.2013.7.907

Statistical ranking using the $l^{1}$-norm on graphs

1. 

Department of Mathematics, University of California, Los Angeles 90095, United States, United States

2. 

Department of Mathematics, UCLA, Los Angeles, CA 90095-1555

Received  January 2012 Revised  January 2013 Published  September 2013

We consider the problem of establishing a statistical ranking for a set of alternatives from a dataset which consists of an (inconsistent and incomplete) set of quantitative pairwise comparisons of the alternatives. If we consider the directed graph where vertices represent the alternatives and the pairwise comparison data is a function on the arcs, then the statistical ranking problem is to find a potential function, defined on the vertices, such that the gradient of the potential optimally agrees with the pairwise comparisons. Potentials, optimal in the $l^{2}$-norm sense, can be found by solving a least-squares problem on the digraph and, recently, the residual has been interpreted using the Hodge decomposition (Jiang et. al., 2010). In this work, we consider an $l^{1}$-norm formulation of the statistical ranking problem. We describe a fast graph-cut approach for finding $\epsilon$-optimal solutions, which has been used successfully in image processing and computer vision problems. Applying this method to several datasets, we demonstrate its efficacy at finding solutions with sparse residual.
Citation: Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems and Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907
References:
[1]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.

[2]

I. Ali, W. D. Cook and M. Kress, Ordinal ranking and intensity of preference: A linear programming approach, Management Science, 32 (1986), 1642-1647. doi: 10.1287/mnsc.32.12.1642.

[3]

R. Ahuja, D. Hochbaum and J. Orlin, Solving the convex cost integer dual network flow problem, Management Science, 49 (2003), 950-964.

[4]

R. K Ahuja, T. L. Magnanti and J. B. Orlin, "Network Flows: Theory, Algorithms and Applications," Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.

[5]

, 2011 ATP world tour media guide, accessed 10/5/2011. Available from: http://www.atpworldtour.com/Press/Rankings-and-Stats.aspx.

[6]

J. M. Bioucas-Dias and G. Valadao, Phase unwrapping via graph cuts, IEEE Transactions on Image Processing, 16 (2007), 698-709. doi: 10.1109/TIP.2006.888351.

[7]

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 1124-1137.

[8]

Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), 1222-1239.

[9]

I. Charon and O. Hudry, A survey on the linear ordering problem for weighted or unweighted tournaments, 4OR, 5 (2007), 5-60. doi: 10.1007/s10288-007-0036-6.

[10]

W. D. Cook and M. Kress, Ordinal ranking with intensity preference, Management Science, 31 (1985), 26-32. doi: 10.1287/mnsc.31.1.26.

[11]

E. Candes and T. Tao, Near optimal signal recovery from random projections: Univeral encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406-5425. doi: 10.1109/TIT.2006.885507.

[12]

J. Darbon, "Composants Logiciels et Algorithmes de Minimisation Exacte d'Énergies dÉdiés au Traitement des Images," Ph.D. thesis, Ecole Nationale Supérieure des Télćommunications, October, 2005.

[13]

H. A. David, "The Method of Paired Comparisons," Hafner Publishing Co., New York, 1963.

[14]

, C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank aggregation revisited.

[15]

_______, Rank aggregation methods for the web, Proceedings International Conference World Wide Web (WWW'01), 10 (2001), 613-622.

[16]

L. R. Foulds, "Graph Theory Applications," Universitext, Springer-Verlag, New York, 1992. doi: 10.1007/978-1-4612-0933-1.

[17]

M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in "Recent Advances in Learning and Control" (eds. V. Blondel, S. Boyd and H. Kimura), Lecture Notes in Control and Information Sciences, 371, Springer, London, (2008), 95-110. Available from: http://stanford.edu/ boyd/graph_dcp.html. doi: 10.1007/978-1-84800-155-8_7.

[18]

______, CVX: Matlab software for disciplined convex programming, version 1.21, April, 2011. Available from: http://cvxr.com/cvx.

[19]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Mathematics of Operations Research, 28 (2003), 1-38. doi: 10.1287/moor.28.1.1.14260.

[20]

D. F. Gleich and L.-H. Lim, Rank aggregation via nuclear norm minimization, in "Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining," ACM, New York, (2011), 60-68. doi: 10.1145/2020408.2020425.

[21]

D. Harville, The use of linear-model methodology to rate high school or college football teams, Journal of the American Statistical Association, 72 (1977), 278-289.

[22]

A. N. Hirani, K. Kalyanaraman and S. Watts, Least squares ranking on graphs, arXiv:1011.1716v4, (2011).

[23]

D. S. Hochbaum and E. Moreno-Centeno, Country credit-risk rating aggregation via the separation-deviation model, Optimization Methods and Software, 23 (2008), 741-762. doi: 10.1080/10556780802402432.

[24]

D. S. Hochbaum, The separation and separation-deviation methodology for group decision making and aggregate ranking, TutORials in Operations Research, 7 (2010), 116-141.

[25]

, Jester: The online joke recommender, accessed 9/9/2011. Available from: http://eigentaste.berkeley.edu/dataset/jester_dataset_2.zip.

[26]

X. Jiang, L.-H. Lim, Y. Yao and Y. Ye, Statistical ranking and combinatorial Hodge theory, Math. Program. Ser. B, 127 (2011), 203-244. doi: 10.1007/s10107-010-0419-x.

[27]

J. G. Kemeny and J. L. Snell, "Mathematical Models in the Social Sciences," The MIT Press, 1962.

[28]

V. Kolmogorov and A. Shioura, New algorithms for convex cost tension problem with application to computer vision, Discrete Optimization, 6 (2009), 378-393. doi: 10.1016/j.disopt.2009.04.006.

[29]

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts?, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (2004), 147-159.

[30]

J. I. Marden, "Analyzing and Modeling Rank Data," Monographs on Statistics and Applied Probability, 64, Chapman & Hall, London, 1995.

[31]

W. Ma, J.-M. Morel, S. Osher and A. Chien, An l1-based model for retinex theory and its application to medical images, IEEE Conference on Computer Vision and Pattern Recognition, (2011), 153-160.

[32]

K. Murota, "Discrete Convex Optimization," SIAM Society for Industrial and Applied Mathematics, 2003.

[33]

R. T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.

[34]

R. T. Rockafellar, "Network Flows and Monotropic Optimization," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.

[35]

D. G. Saari, Mathematical structure of voting paradoxes. I. Pairwise votes, Economic Theory, 15 (2000), 1-53. doi: 10.1007/s001990050001.

[36]

, Scrapy web crawling framework, accessed 10/5/2011. Available from: http://scrapy.org/.

[37]

R. T. Stefani, Football and basketball predictions using least squares, IEEE Transactions on Systems, Man, and Cybernetics, 7 (1977), 117-121.

[38]

, Tennis datenbank website, accessed 10/5/2011. Available from: http://tennis.wettpoint.com/en/.

[39]

N. M. Tran, Pairwise ranking: Choice of method can produce arbitrarily different rank order, Linear Algebra Appl., 438 (2013), 1012-1024. doi: 10.1016/j.laa.2012.08.028.

[40]

_______, Hodgerank is the limit of Perron Rank, preprint, arXiv:1201.4632, (2012).

[41]

Q. Xu, Y. Yao, T. Jiang, Q. Huang, B. Yan and W. Lin, Random partial paired comparison for subjective video quality assessment via hodgerank, in "Proceedings of the 19th ACM International Conference on Multimedia," ACM, New York, (2011), 393-402. doi: 10.1145/2072298.2072350.

[42]

, Yahoo! Webscope dataset: ydata-ymovies-user-movie-ratings-content-v1_0, accessed 10/5/2011. Available from: http://webscope.sandbox.yahoo.com.

[43]

H. P. Young, Condorcet's theory of voting, The American Political Science Review, 82 (1988), 1231-1244.

show all references

References:
[1]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.

[2]

I. Ali, W. D. Cook and M. Kress, Ordinal ranking and intensity of preference: A linear programming approach, Management Science, 32 (1986), 1642-1647. doi: 10.1287/mnsc.32.12.1642.

[3]

R. Ahuja, D. Hochbaum and J. Orlin, Solving the convex cost integer dual network flow problem, Management Science, 49 (2003), 950-964.

[4]

R. K Ahuja, T. L. Magnanti and J. B. Orlin, "Network Flows: Theory, Algorithms and Applications," Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.

[5]

, 2011 ATP world tour media guide, accessed 10/5/2011. Available from: http://www.atpworldtour.com/Press/Rankings-and-Stats.aspx.

[6]

J. M. Bioucas-Dias and G. Valadao, Phase unwrapping via graph cuts, IEEE Transactions on Image Processing, 16 (2007), 698-709. doi: 10.1109/TIP.2006.888351.

[7]

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 1124-1137.

[8]

Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), 1222-1239.

[9]

I. Charon and O. Hudry, A survey on the linear ordering problem for weighted or unweighted tournaments, 4OR, 5 (2007), 5-60. doi: 10.1007/s10288-007-0036-6.

[10]

W. D. Cook and M. Kress, Ordinal ranking with intensity preference, Management Science, 31 (1985), 26-32. doi: 10.1287/mnsc.31.1.26.

[11]

E. Candes and T. Tao, Near optimal signal recovery from random projections: Univeral encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406-5425. doi: 10.1109/TIT.2006.885507.

[12]

J. Darbon, "Composants Logiciels et Algorithmes de Minimisation Exacte d'Énergies dÉdiés au Traitement des Images," Ph.D. thesis, Ecole Nationale Supérieure des Télćommunications, October, 2005.

[13]

H. A. David, "The Method of Paired Comparisons," Hafner Publishing Co., New York, 1963.

[14]

, C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank aggregation revisited.

[15]

_______, Rank aggregation methods for the web, Proceedings International Conference World Wide Web (WWW'01), 10 (2001), 613-622.

[16]

L. R. Foulds, "Graph Theory Applications," Universitext, Springer-Verlag, New York, 1992. doi: 10.1007/978-1-4612-0933-1.

[17]

M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in "Recent Advances in Learning and Control" (eds. V. Blondel, S. Boyd and H. Kimura), Lecture Notes in Control and Information Sciences, 371, Springer, London, (2008), 95-110. Available from: http://stanford.edu/ boyd/graph_dcp.html. doi: 10.1007/978-1-84800-155-8_7.

[18]

______, CVX: Matlab software for disciplined convex programming, version 1.21, April, 2011. Available from: http://cvxr.com/cvx.

[19]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Mathematics of Operations Research, 28 (2003), 1-38. doi: 10.1287/moor.28.1.1.14260.

[20]

D. F. Gleich and L.-H. Lim, Rank aggregation via nuclear norm minimization, in "Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining," ACM, New York, (2011), 60-68. doi: 10.1145/2020408.2020425.

[21]

D. Harville, The use of linear-model methodology to rate high school or college football teams, Journal of the American Statistical Association, 72 (1977), 278-289.

[22]

A. N. Hirani, K. Kalyanaraman and S. Watts, Least squares ranking on graphs, arXiv:1011.1716v4, (2011).

[23]

D. S. Hochbaum and E. Moreno-Centeno, Country credit-risk rating aggregation via the separation-deviation model, Optimization Methods and Software, 23 (2008), 741-762. doi: 10.1080/10556780802402432.

[24]

D. S. Hochbaum, The separation and separation-deviation methodology for group decision making and aggregate ranking, TutORials in Operations Research, 7 (2010), 116-141.

[25]

, Jester: The online joke recommender, accessed 9/9/2011. Available from: http://eigentaste.berkeley.edu/dataset/jester_dataset_2.zip.

[26]

X. Jiang, L.-H. Lim, Y. Yao and Y. Ye, Statistical ranking and combinatorial Hodge theory, Math. Program. Ser. B, 127 (2011), 203-244. doi: 10.1007/s10107-010-0419-x.

[27]

J. G. Kemeny and J. L. Snell, "Mathematical Models in the Social Sciences," The MIT Press, 1962.

[28]

V. Kolmogorov and A. Shioura, New algorithms for convex cost tension problem with application to computer vision, Discrete Optimization, 6 (2009), 378-393. doi: 10.1016/j.disopt.2009.04.006.

[29]

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts?, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (2004), 147-159.

[30]

J. I. Marden, "Analyzing and Modeling Rank Data," Monographs on Statistics and Applied Probability, 64, Chapman & Hall, London, 1995.

[31]

W. Ma, J.-M. Morel, S. Osher and A. Chien, An l1-based model for retinex theory and its application to medical images, IEEE Conference on Computer Vision and Pattern Recognition, (2011), 153-160.

[32]

K. Murota, "Discrete Convex Optimization," SIAM Society for Industrial and Applied Mathematics, 2003.

[33]

R. T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.

[34]

R. T. Rockafellar, "Network Flows and Monotropic Optimization," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.

[35]

D. G. Saari, Mathematical structure of voting paradoxes. I. Pairwise votes, Economic Theory, 15 (2000), 1-53. doi: 10.1007/s001990050001.

[36]

, Scrapy web crawling framework, accessed 10/5/2011. Available from: http://scrapy.org/.

[37]

R. T. Stefani, Football and basketball predictions using least squares, IEEE Transactions on Systems, Man, and Cybernetics, 7 (1977), 117-121.

[38]

, Tennis datenbank website, accessed 10/5/2011. Available from: http://tennis.wettpoint.com/en/.

[39]

N. M. Tran, Pairwise ranking: Choice of method can produce arbitrarily different rank order, Linear Algebra Appl., 438 (2013), 1012-1024. doi: 10.1016/j.laa.2012.08.028.

[40]

_______, Hodgerank is the limit of Perron Rank, preprint, arXiv:1201.4632, (2012).

[41]

Q. Xu, Y. Yao, T. Jiang, Q. Huang, B. Yan and W. Lin, Random partial paired comparison for subjective video quality assessment via hodgerank, in "Proceedings of the 19th ACM International Conference on Multimedia," ACM, New York, (2011), 393-402. doi: 10.1145/2072298.2072350.

[42]

, Yahoo! Webscope dataset: ydata-ymovies-user-movie-ratings-content-v1_0, accessed 10/5/2011. Available from: http://webscope.sandbox.yahoo.com.

[43]

H. P. Young, Condorcet's theory of voting, The American Political Science Review, 82 (1988), 1231-1244.

[1]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations and Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[2]

Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems and Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257

[3]

Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng. Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022045

[4]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[5]

Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507

[6]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems and Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[7]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[8]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1835-1861. doi: 10.3934/jimo.2021046

[9]

Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems and Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199

[10]

Ming Yang, Dunren Che, Wen Liu, Zhao Kang, Chong Peng, Mingqing Xiao, Qiang Cheng. On identifiability of 3-tensors of multilinear rank $(1,\ L_{r},\ L_{r})$. Big Data & Information Analytics, 2016, 1 (4) : 391-401. doi: 10.3934/bdia.2016017

[11]

Blaine Keetch, Yves van Gennip. A Max-Cut approximation using a graph based MBO scheme. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6091-6139. doi: 10.3934/dcdsb.2019132

[12]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2425-2437. doi: 10.3934/jimo.2019061

[13]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[14]

Zhaohui Guo, Stanley Osher. Template matching via $l_1$ minimization and its application to hyperspectral data. Inverse Problems and Imaging, 2011, 5 (1) : 19-35. doi: 10.3934/ipi.2011.5.19

[15]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems and Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[16]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems and Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

[17]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[18]

Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4121-4141. doi: 10.3934/dcdsb.2021220

[19]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[20]

Kuei-Hu Chang. A novel risk ranking method based on the single valued neutrosophic set. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2237-2253. doi: 10.3934/jimo.2021065

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (198)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]