August  2013, 7(3): 907-926. doi: 10.3934/ipi.2013.7.907

Statistical ranking using the $l^{1}$-norm on graphs

1. 

Department of Mathematics, University of California, Los Angeles 90095, United States, United States

2. 

Department of Mathematics, UCLA, Los Angeles, CA 90095-1555

Received  January 2012 Revised  January 2013 Published  September 2013

We consider the problem of establishing a statistical ranking for a set of alternatives from a dataset which consists of an (inconsistent and incomplete) set of quantitative pairwise comparisons of the alternatives. If we consider the directed graph where vertices represent the alternatives and the pairwise comparison data is a function on the arcs, then the statistical ranking problem is to find a potential function, defined on the vertices, such that the gradient of the potential optimally agrees with the pairwise comparisons. Potentials, optimal in the $l^{2}$-norm sense, can be found by solving a least-squares problem on the digraph and, recently, the residual has been interpreted using the Hodge decomposition (Jiang et. al., 2010). In this work, we consider an $l^{1}$-norm formulation of the statistical ranking problem. We describe a fast graph-cut approach for finding $\epsilon$-optimal solutions, which has been used successfully in image processing and computer vision problems. Applying this method to several datasets, we demonstrate its efficacy at finding solutions with sparse residual.
Citation: Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907
References:
[1]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264 (1984). doi: 10.1007/978-3-642-69512-4.

[2]

I. Ali, W. D. Cook and M. Kress, Ordinal ranking and intensity of preference: A linear programming approach,, Management Science, 32 (1986), 1642. doi: 10.1287/mnsc.32.12.1642.

[3]

R. Ahuja, D. Hochbaum and J. Orlin, Solving the convex cost integer dual network flow problem,, Management Science, 49 (2003), 950.

[4]

R. K Ahuja, T. L. Magnanti and J. B. Orlin, "Network Flows: Theory, Algorithms and Applications,", Prentice Hall, (1993).

[5]

, 2011 ATP world tour media guide,, accessed 10/5/2011. Available from: , ().

[6]

J. M. Bioucas-Dias and G. Valadao, Phase unwrapping via graph cuts,, IEEE Transactions on Image Processing, 16 (2007), 698. doi: 10.1109/TIP.2006.888351.

[7]

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 1124.

[8]

Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), 1222.

[9]

I. Charon and O. Hudry, A survey on the linear ordering problem for weighted or unweighted tournaments,, 4OR, 5 (2007), 5. doi: 10.1007/s10288-007-0036-6.

[10]

W. D. Cook and M. Kress, Ordinal ranking with intensity preference,, Management Science, 31 (1985), 26. doi: 10.1287/mnsc.31.1.26.

[11]

E. Candes and T. Tao, Near optimal signal recovery from random projections: Univeral encoding strategies?,, IEEE Transactions on Information Theory, 52 (2006), 5406. doi: 10.1109/TIT.2006.885507.

[12]

J. Darbon, "Composants Logiciels et Algorithmes de Minimisation Exacte d'Énergies dÉdiés au Traitement des Images,", Ph.D. thesis, (2005).

[13]

H. A. David, "The Method of Paired Comparisons,", Hafner Publishing Co., (1963).

[14]

, C. Dwork, R. Kumar, M. Naor and D. Sivakumar,, Rank aggregation revisited., ().

[15]

_______, Rank aggregation methods for the web,, Proceedings International Conference World Wide Web (WWW'01), 10 (2001), 613.

[16]

L. R. Foulds, "Graph Theory Applications,", Universitext, (1992). doi: 10.1007/978-1-4612-0933-1.

[17]

M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs,, in, 371 (2008), 95. doi: 10.1007/978-1-84800-155-8_7.

[18]

______, CVX: Matlab software for disciplined convex programming, version 1.21,, April, (2011).

[19]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems,, Mathematics of Operations Research, 28 (2003), 1. doi: 10.1287/moor.28.1.1.14260.

[20]

D. F. Gleich and L.-H. Lim, Rank aggregation via nuclear norm minimization,, in, (2011), 60. doi: 10.1145/2020408.2020425.

[21]

D. Harville, The use of linear-model methodology to rate high school or college football teams,, Journal of the American Statistical Association, 72 (1977), 278.

[22]

A. N. Hirani, K. Kalyanaraman and S. Watts, Least squares ranking on graphs,, , (2011).

[23]

D. S. Hochbaum and E. Moreno-Centeno, Country credit-risk rating aggregation via the separation-deviation model,, Optimization Methods and Software, 23 (2008), 741. doi: 10.1080/10556780802402432.

[24]

D. S. Hochbaum, The separation and separation-deviation methodology for group decision making and aggregate ranking,, TutORials in Operations Research, 7 (2010), 116.

[25]

, Jester: The online joke recommender,, accessed 9/9/2011. Available from: , ().

[26]

X. Jiang, L.-H. Lim, Y. Yao and Y. Ye, Statistical ranking and combinatorial Hodge theory,, Math. Program. Ser. B, 127 (2011), 203. doi: 10.1007/s10107-010-0419-x.

[27]

J. G. Kemeny and J. L. Snell, "Mathematical Models in the Social Sciences,", The MIT Press, (1962).

[28]

V. Kolmogorov and A. Shioura, New algorithms for convex cost tension problem with application to computer vision,, Discrete Optimization, 6 (2009), 378. doi: 10.1016/j.disopt.2009.04.006.

[29]

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts?,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (2004), 147.

[30]

J. I. Marden, "Analyzing and Modeling Rank Data,", Monographs on Statistics and Applied Probability, 64 (1995).

[31]

W. Ma, J.-M. Morel, S. Osher and A. Chien, An l1-based model for retinex theory and its application to medical images,, IEEE Conference on Computer Vision and Pattern Recognition, (2011), 153.

[32]

K. Murota, "Discrete Convex Optimization,", SIAM Society for Industrial and Applied Mathematics, (2003).

[33]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).

[34]

R. T. Rockafellar, "Network Flows and Monotropic Optimization,", Pure and Applied Mathematics (New York), (1984).

[35]

D. G. Saari, Mathematical structure of voting paradoxes. I. Pairwise votes,, Economic Theory, 15 (2000), 1. doi: 10.1007/s001990050001.

[36]

, Scrapy web crawling framework,, accessed 10/5/2011. Available from: , ().

[37]

R. T. Stefani, Football and basketball predictions using least squares,, IEEE Transactions on Systems, 7 (1977), 117.

[38]

, Tennis datenbank website,, accessed 10/5/2011. Available from: , ().

[39]

N. M. Tran, Pairwise ranking: Choice of method can produce arbitrarily different rank order,, Linear Algebra Appl., 438 (2013), 1012. doi: 10.1016/j.laa.2012.08.028.

[40]

_______, Hodgerank is the limit of Perron Rank,, preprint, (2012).

[41]

Q. Xu, Y. Yao, T. Jiang, Q. Huang, B. Yan and W. Lin, Random partial paired comparison for subjective video quality assessment via hodgerank,, in, (2011), 393. doi: 10.1145/2072298.2072350.

[42]

, Yahoo! Webscope dataset: ydata-ymovies-user-movie-ratings-content-v1_0,, accessed 10/5/2011. Available from: , ().

[43]

H. P. Young, Condorcet's theory of voting,, The American Political Science Review, 82 (1988), 1231.

show all references

References:
[1]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264 (1984). doi: 10.1007/978-3-642-69512-4.

[2]

I. Ali, W. D. Cook and M. Kress, Ordinal ranking and intensity of preference: A linear programming approach,, Management Science, 32 (1986), 1642. doi: 10.1287/mnsc.32.12.1642.

[3]

R. Ahuja, D. Hochbaum and J. Orlin, Solving the convex cost integer dual network flow problem,, Management Science, 49 (2003), 950.

[4]

R. K Ahuja, T. L. Magnanti and J. B. Orlin, "Network Flows: Theory, Algorithms and Applications,", Prentice Hall, (1993).

[5]

, 2011 ATP world tour media guide,, accessed 10/5/2011. Available from: , ().

[6]

J. M. Bioucas-Dias and G. Valadao, Phase unwrapping via graph cuts,, IEEE Transactions on Image Processing, 16 (2007), 698. doi: 10.1109/TIP.2006.888351.

[7]

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 1124.

[8]

Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), 1222.

[9]

I. Charon and O. Hudry, A survey on the linear ordering problem for weighted or unweighted tournaments,, 4OR, 5 (2007), 5. doi: 10.1007/s10288-007-0036-6.

[10]

W. D. Cook and M. Kress, Ordinal ranking with intensity preference,, Management Science, 31 (1985), 26. doi: 10.1287/mnsc.31.1.26.

[11]

E. Candes and T. Tao, Near optimal signal recovery from random projections: Univeral encoding strategies?,, IEEE Transactions on Information Theory, 52 (2006), 5406. doi: 10.1109/TIT.2006.885507.

[12]

J. Darbon, "Composants Logiciels et Algorithmes de Minimisation Exacte d'Énergies dÉdiés au Traitement des Images,", Ph.D. thesis, (2005).

[13]

H. A. David, "The Method of Paired Comparisons,", Hafner Publishing Co., (1963).

[14]

, C. Dwork, R. Kumar, M. Naor and D. Sivakumar,, Rank aggregation revisited., ().

[15]

_______, Rank aggregation methods for the web,, Proceedings International Conference World Wide Web (WWW'01), 10 (2001), 613.

[16]

L. R. Foulds, "Graph Theory Applications,", Universitext, (1992). doi: 10.1007/978-1-4612-0933-1.

[17]

M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs,, in, 371 (2008), 95. doi: 10.1007/978-1-84800-155-8_7.

[18]

______, CVX: Matlab software for disciplined convex programming, version 1.21,, April, (2011).

[19]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems,, Mathematics of Operations Research, 28 (2003), 1. doi: 10.1287/moor.28.1.1.14260.

[20]

D. F. Gleich and L.-H. Lim, Rank aggregation via nuclear norm minimization,, in, (2011), 60. doi: 10.1145/2020408.2020425.

[21]

D. Harville, The use of linear-model methodology to rate high school or college football teams,, Journal of the American Statistical Association, 72 (1977), 278.

[22]

A. N. Hirani, K. Kalyanaraman and S. Watts, Least squares ranking on graphs,, , (2011).

[23]

D. S. Hochbaum and E. Moreno-Centeno, Country credit-risk rating aggregation via the separation-deviation model,, Optimization Methods and Software, 23 (2008), 741. doi: 10.1080/10556780802402432.

[24]

D. S. Hochbaum, The separation and separation-deviation methodology for group decision making and aggregate ranking,, TutORials in Operations Research, 7 (2010), 116.

[25]

, Jester: The online joke recommender,, accessed 9/9/2011. Available from: , ().

[26]

X. Jiang, L.-H. Lim, Y. Yao and Y. Ye, Statistical ranking and combinatorial Hodge theory,, Math. Program. Ser. B, 127 (2011), 203. doi: 10.1007/s10107-010-0419-x.

[27]

J. G. Kemeny and J. L. Snell, "Mathematical Models in the Social Sciences,", The MIT Press, (1962).

[28]

V. Kolmogorov and A. Shioura, New algorithms for convex cost tension problem with application to computer vision,, Discrete Optimization, 6 (2009), 378. doi: 10.1016/j.disopt.2009.04.006.

[29]

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts?,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (2004), 147.

[30]

J. I. Marden, "Analyzing and Modeling Rank Data,", Monographs on Statistics and Applied Probability, 64 (1995).

[31]

W. Ma, J.-M. Morel, S. Osher and A. Chien, An l1-based model for retinex theory and its application to medical images,, IEEE Conference on Computer Vision and Pattern Recognition, (2011), 153.

[32]

K. Murota, "Discrete Convex Optimization,", SIAM Society for Industrial and Applied Mathematics, (2003).

[33]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).

[34]

R. T. Rockafellar, "Network Flows and Monotropic Optimization,", Pure and Applied Mathematics (New York), (1984).

[35]

D. G. Saari, Mathematical structure of voting paradoxes. I. Pairwise votes,, Economic Theory, 15 (2000), 1. doi: 10.1007/s001990050001.

[36]

, Scrapy web crawling framework,, accessed 10/5/2011. Available from: , ().

[37]

R. T. Stefani, Football and basketball predictions using least squares,, IEEE Transactions on Systems, 7 (1977), 117.

[38]

, Tennis datenbank website,, accessed 10/5/2011. Available from: , ().

[39]

N. M. Tran, Pairwise ranking: Choice of method can produce arbitrarily different rank order,, Linear Algebra Appl., 438 (2013), 1012. doi: 10.1016/j.laa.2012.08.028.

[40]

_______, Hodgerank is the limit of Perron Rank,, preprint, (2012).

[41]

Q. Xu, Y. Yao, T. Jiang, Q. Huang, B. Yan and W. Lin, Random partial paired comparison for subjective video quality assessment via hodgerank,, in, (2011), 393. doi: 10.1145/2072298.2072350.

[42]

, Yahoo! Webscope dataset: ydata-ymovies-user-movie-ratings-content-v1_0,, accessed 10/5/2011. Available from: , ().

[43]

H. P. Young, Condorcet's theory of voting,, The American Political Science Review, 82 (1988), 1231.

[1]

Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems & Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257

[2]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[3]

Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507

[4]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems & Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[5]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[6]

Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems & Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199

[7]

Ming Yang, Dunren Che, Wen Liu, Zhao Kang, Chong Peng, Mingqing Xiao, Qiang Cheng. On identifiability of 3-tensors of multilinear rank $(1,\ L_{r},\ L_{r})$. Big Data & Information Analytics, 2016, 1 (4) : 391-401. doi: 10.3934/bdia.2016017

[8]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2019061

[9]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems & Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[10]

Zhaohui Guo, Stanley Osher. Template matching via $l_1$ minimization and its application to hyperspectral data. Inverse Problems & Imaging, 2011, 5 (1) : 19-35. doi: 10.3934/ipi.2011.5.19

[11]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems & Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[12]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

[13]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[14]

Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057

[15]

Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[16]

Donglei Du, Tianping Shuai. Errata to:''Optimal preemptive online scheduling to minimize $l_{p}$ norm on two processors''[Journal of Industrial and Management Optimization, 1(3) (2005), 345-351.]. Journal of Industrial & Management Optimization, 2008, 4 (2) : 339-341. doi: 10.3934/jimo.2008.4.339

[17]

Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949

[18]

Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493

[19]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[20]

Sijia Zhong, Daoyuan Fang. $L^2$-concentration phenomenon for Zakharov system below energy norm II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1117-1132. doi: 10.3934/cpaa.2009.8.1117

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]