-
Previous Article
3D adaptive finite element method for a phase field model for the moving contact line problems
- IPI Home
- This Issue
-
Next Article
Statistical ranking using the $l^{1}$-norm on graphs
A texture model based on a concentration of measure
1. | Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States, United States |
2. | Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095-1555, United States |
References:
[1] |
G. Aubert and P. Kornprobst, "Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations,", Second edition, 147 (2006).
|
[2] |
Gilles Aubert and Jean-François Aujol, Modeling very oscillating signals. Application to image processing,, Applied Mathematics and Optimization, 51 (2005), 163.
doi: 10.1007/s00245-004-0812-z. |
[3] |
J.-F. Aujol, "Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Équations aux Dérivées Partielles,", Ph.D thesis, (2004). Google Scholar |
[4] |
J.-F. Aujol and T. F. Chan, Combining geometrical and textured information to perform image classification,, Journal of Visual Communication and Image Representation, 17 (2006), 1004.
doi: 10.1016/j.jvcir.2006.02.001. |
[5] |
J.-F. Aujol and S. H. Kang, Color image decomposition and restoration,, Journal of Visual Communication and Image Representation, 17 (2006), 916.
doi: 10.1016/j.jvcir.2005.02.001. |
[6] |
Jean-François Aujol, Gilles Aubert, Laure Blanc-Féraud and Antonin Chambolle, Image decomposition into a bounded variation component and an oscillating component,, Journal of Mathematical Imaging and Vision, 22 (2005), 71.
doi: 10.1007/s10851-005-4783-8. |
[7] |
L. Bar, N. Sochen and N. Kiryati, Semi-blind image restoration via Mumford-Shah regularization,, Image Processing, 15 (2006), 483.
doi: 10.1109/TIP.2005.863120. |
[8] |
M. Bertalmio, L. Vese, G. Sapiro and S. Osher, Simultaneous structure and texture image inpainting,, IEEE Transactions on Image Processing, 12 (2003), 882. Google Scholar |
[9] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian,, Calculus of Variations and Partial Differential Equations, 13 (2001), 123.
|
[10] |
I. Daubechies and G. Teschke, Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising,, Applied and Computational Harmonic Analysis, 19 (2005), 1.
doi: 10.1016/j.acha.2004.12.004. |
[11] |
I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", SIAM, (1999). Google Scholar |
[12] |
L. C. Evans and Y. Yu, Various properties of solutions of the infinity-Laplacian equation,, Communications in Partial Differential Equations, 30 (2005), 1401.
doi: 10.1080/03605300500258956. |
[13] |
J. B. Garnett, T. M. Le, Y. Meyer and L. A. Vese, Image decompositions using bounded variation and generalized homogeneous besov spaces,, Applied and Computational Harmonic Analysis, 23 (2007), 25.
doi: 10.1016/j.acha.2007.01.005. |
[14] |
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, Multiscale Modeling & Simulation, 7 (2009), 1005.
doi: 10.1137/070698592. |
[15] |
J. Gilles, Noisy image decomposition: A new structure, texture and noise model based on local adaptivity,, Journal of Mathematical Imaging and Vision, 28 (2007), 285.
doi: 10.1007/s10851-007-0020-y. |
[16] |
J. Gilles and Y. Meyer, Properties of BV-G structures + textures decomposition models. Application to road detection in satellite images,, IEEE Transactions on Image Processing}, 19 (2010), 2793.
doi: 10.1109/TIP.2010.2049946. |
[17] |
Y. Kim and L. Vese, Image recovery using functions of bounded variation and sobolev spaces of negative differentiability,, Inverse Problems and Imaging, 3 (2009), 43.
doi: 10.3934/ipi.2009.3.43. |
[18] |
T. M. Le, L. H. Lieu and L. A. Vese, $(\phi,\phi*)$ image decomposition models and minimization algorithms,, Journal of Mathematical Imaging and Vision, 33 (2009), 135.
doi: 10.1007/s10851-008-0130-1. |
[19] |
T. M. Le and L. A. Vese, Image decomposition using total variation and div (bmo),, Multiscale Modeling and Simulation, 4 (2005), 390.
doi: 10.1137/040610052. |
[20] |
L. H. Lieu and L. A. Vese, Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces,, Applied Mathematics and Optimization, 58 (2008), 167.
doi: 10.1007/s00245-008-9047-8. |
[21] |
G. Lu and P. Wang, Inhomogeneous infinity Laplace equation,, Advances in Mathematics, 217 (2008), 1838.
doi: 10.1016/j.aim.2007.11.020. |
[22] |
Y. Meyer, "Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures,", University Lecture Series, 22 (2001).
|
[23] |
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Communications on Pure and Applied Mathematics, 42 (1989), 577.
doi: 10.1002/cpa.3160420503. |
[24] |
S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the h1,, Multiscale Modeling & Simulation, 1 (2003), 349.
doi: 10.1137/S1540345902416247. |
[25] |
R. J. Renka, A simple explanation of the sobolev gradient method,, (2006)., (2006). Google Scholar |
[26] |
W. B. Richardson, Sobolev gradient preconditioning for image-processing PDEs,, Communications in Numerical Methods in Engineering, 24 (2006), 493.
doi: 10.1002/cnm.951. |
[27] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259.
doi: 10.1016/0167-2789(92)90242-F. |
[28] |
Hayden Schaeffer and Stanley Osher, A low patch-rank interpretation of texture,, SIAM Journal on Imaging Sciences, 6 (2013), 226.
doi: 10.1137/110854989. |
[29] |
J. Shen, Piecewise $H^{-1} -H^0 - H^1$ images and the Mumford-Shah-Sobolev model for segmented image decomposition,, APPL. MATH. RES. EXP, 4 (2005). Google Scholar |
[30] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, International Journal of Computer Vision, 73 (2007), 345. Google Scholar |
[31] |
L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing,, Journal of Scientific Computing, 19 (2002), 553.
doi: 10.1023/A:1025384832106. |
[32] |
L. A. Vese and S. J. Osher, Image denoising and decomposition with total variation minimization and oscillatory functions,, Journal of Mathematical Imaging and Vision, 20 (2004), 7.
doi: 10.1023/B:JMIV.0000011316.54027.6a. |
show all references
References:
[1] |
G. Aubert and P. Kornprobst, "Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations,", Second edition, 147 (2006).
|
[2] |
Gilles Aubert and Jean-François Aujol, Modeling very oscillating signals. Application to image processing,, Applied Mathematics and Optimization, 51 (2005), 163.
doi: 10.1007/s00245-004-0812-z. |
[3] |
J.-F. Aujol, "Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Équations aux Dérivées Partielles,", Ph.D thesis, (2004). Google Scholar |
[4] |
J.-F. Aujol and T. F. Chan, Combining geometrical and textured information to perform image classification,, Journal of Visual Communication and Image Representation, 17 (2006), 1004.
doi: 10.1016/j.jvcir.2006.02.001. |
[5] |
J.-F. Aujol and S. H. Kang, Color image decomposition and restoration,, Journal of Visual Communication and Image Representation, 17 (2006), 916.
doi: 10.1016/j.jvcir.2005.02.001. |
[6] |
Jean-François Aujol, Gilles Aubert, Laure Blanc-Féraud and Antonin Chambolle, Image decomposition into a bounded variation component and an oscillating component,, Journal of Mathematical Imaging and Vision, 22 (2005), 71.
doi: 10.1007/s10851-005-4783-8. |
[7] |
L. Bar, N. Sochen and N. Kiryati, Semi-blind image restoration via Mumford-Shah regularization,, Image Processing, 15 (2006), 483.
doi: 10.1109/TIP.2005.863120. |
[8] |
M. Bertalmio, L. Vese, G. Sapiro and S. Osher, Simultaneous structure and texture image inpainting,, IEEE Transactions on Image Processing, 12 (2003), 882. Google Scholar |
[9] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian,, Calculus of Variations and Partial Differential Equations, 13 (2001), 123.
|
[10] |
I. Daubechies and G. Teschke, Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising,, Applied and Computational Harmonic Analysis, 19 (2005), 1.
doi: 10.1016/j.acha.2004.12.004. |
[11] |
I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", SIAM, (1999). Google Scholar |
[12] |
L. C. Evans and Y. Yu, Various properties of solutions of the infinity-Laplacian equation,, Communications in Partial Differential Equations, 30 (2005), 1401.
doi: 10.1080/03605300500258956. |
[13] |
J. B. Garnett, T. M. Le, Y. Meyer and L. A. Vese, Image decompositions using bounded variation and generalized homogeneous besov spaces,, Applied and Computational Harmonic Analysis, 23 (2007), 25.
doi: 10.1016/j.acha.2007.01.005. |
[14] |
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, Multiscale Modeling & Simulation, 7 (2009), 1005.
doi: 10.1137/070698592. |
[15] |
J. Gilles, Noisy image decomposition: A new structure, texture and noise model based on local adaptivity,, Journal of Mathematical Imaging and Vision, 28 (2007), 285.
doi: 10.1007/s10851-007-0020-y. |
[16] |
J. Gilles and Y. Meyer, Properties of BV-G structures + textures decomposition models. Application to road detection in satellite images,, IEEE Transactions on Image Processing}, 19 (2010), 2793.
doi: 10.1109/TIP.2010.2049946. |
[17] |
Y. Kim and L. Vese, Image recovery using functions of bounded variation and sobolev spaces of negative differentiability,, Inverse Problems and Imaging, 3 (2009), 43.
doi: 10.3934/ipi.2009.3.43. |
[18] |
T. M. Le, L. H. Lieu and L. A. Vese, $(\phi,\phi*)$ image decomposition models and minimization algorithms,, Journal of Mathematical Imaging and Vision, 33 (2009), 135.
doi: 10.1007/s10851-008-0130-1. |
[19] |
T. M. Le and L. A. Vese, Image decomposition using total variation and div (bmo),, Multiscale Modeling and Simulation, 4 (2005), 390.
doi: 10.1137/040610052. |
[20] |
L. H. Lieu and L. A. Vese, Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces,, Applied Mathematics and Optimization, 58 (2008), 167.
doi: 10.1007/s00245-008-9047-8. |
[21] |
G. Lu and P. Wang, Inhomogeneous infinity Laplace equation,, Advances in Mathematics, 217 (2008), 1838.
doi: 10.1016/j.aim.2007.11.020. |
[22] |
Y. Meyer, "Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures,", University Lecture Series, 22 (2001).
|
[23] |
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Communications on Pure and Applied Mathematics, 42 (1989), 577.
doi: 10.1002/cpa.3160420503. |
[24] |
S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the h1,, Multiscale Modeling & Simulation, 1 (2003), 349.
doi: 10.1137/S1540345902416247. |
[25] |
R. J. Renka, A simple explanation of the sobolev gradient method,, (2006)., (2006). Google Scholar |
[26] |
W. B. Richardson, Sobolev gradient preconditioning for image-processing PDEs,, Communications in Numerical Methods in Engineering, 24 (2006), 493.
doi: 10.1002/cnm.951. |
[27] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259.
doi: 10.1016/0167-2789(92)90242-F. |
[28] |
Hayden Schaeffer and Stanley Osher, A low patch-rank interpretation of texture,, SIAM Journal on Imaging Sciences, 6 (2013), 226.
doi: 10.1137/110854989. |
[29] |
J. Shen, Piecewise $H^{-1} -H^0 - H^1$ images and the Mumford-Shah-Sobolev model for segmented image decomposition,, APPL. MATH. RES. EXP, 4 (2005). Google Scholar |
[30] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, International Journal of Computer Vision, 73 (2007), 345. Google Scholar |
[31] |
L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing,, Journal of Scientific Computing, 19 (2002), 553.
doi: 10.1023/A:1025384832106. |
[32] |
L. A. Vese and S. J. Osher, Image denoising and decomposition with total variation minimization and oscillatory functions,, Journal of Mathematical Imaging and Vision, 20 (2004), 7.
doi: 10.1023/B:JMIV.0000011316.54027.6a. |
[1] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285 |
[2] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[3] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[4] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[5] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[6] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[7] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[8] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[9] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[10] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[11] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
[12] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[13] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[14] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[15] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[16] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[17] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[18] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[19] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[20] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]