August  2013, 7(3): 927-946. doi: 10.3934/ipi.2013.7.927

A texture model based on a concentration of measure

1. 

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States, United States

2. 

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095-1555, United States

Received  July 2012 Revised  May 2013 Published  September 2013

Cartoon-texture regularization is a technique for reconstructing fine-scale details from ill-posed imaging problems, which are often ill-posed because of some non-invertible convolution kernel. Here we propose a cartoon-texture regularization for deblurring problems with semi-known kernel. The cartoon component is modeled by a function of bounded variation, while the texture component is measured by an approximate duality with Lipschitz functions ($W^{1,\infty}$). To approximate the dual Lipschitz norm, which is difficult to calculate, we propose an approach using concentration of measure. This provides an accurate and differentiable expression. We also present numerical results for our cartoon-texture decomposition, both in the case of a semi-known deblurring kernel and the case of a known kernel. The texture norm enables one to numerically reconstruct fine scale details that are typically difficult to recover from blurred images, and for semi-known deblurring the method quickly leads to the correct kernel, even when that kernel contains noise.
Citation: Hayden Schaeffer, John Garnett, Luminita A. Vese. A texture model based on a concentration of measure. Inverse Problems & Imaging, 2013, 7 (3) : 927-946. doi: 10.3934/ipi.2013.7.927
References:
[1]

G. Aubert and P. Kornprobst, "Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations,", Second edition, 147 (2006).

[2]

Gilles Aubert and Jean-François Aujol, Modeling very oscillating signals. Application to image processing,, Applied Mathematics and Optimization, 51 (2005), 163. doi: 10.1007/s00245-004-0812-z.

[3]

J.-F. Aujol, "Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Équations aux Dérivées Partielles,", Ph.D thesis, (2004).

[4]

J.-F. Aujol and T. F. Chan, Combining geometrical and textured information to perform image classification,, Journal of Visual Communication and Image Representation, 17 (2006), 1004. doi: 10.1016/j.jvcir.2006.02.001.

[5]

J.-F. Aujol and S. H. Kang, Color image decomposition and restoration,, Journal of Visual Communication and Image Representation, 17 (2006), 916. doi: 10.1016/j.jvcir.2005.02.001.

[6]

Jean-François Aujol, Gilles Aubert, Laure Blanc-Féraud and Antonin Chambolle, Image decomposition into a bounded variation component and an oscillating component,, Journal of Mathematical Imaging and Vision, 22 (2005), 71. doi: 10.1007/s10851-005-4783-8.

[7]

L. Bar, N. Sochen and N. Kiryati, Semi-blind image restoration via Mumford-Shah regularization,, Image Processing, 15 (2006), 483. doi: 10.1109/TIP.2005.863120.

[8]

M. Bertalmio, L. Vese, G. Sapiro and S. Osher, Simultaneous structure and texture image inpainting,, IEEE Transactions on Image Processing, 12 (2003), 882.

[9]

M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian,, Calculus of Variations and Partial Differential Equations, 13 (2001), 123.

[10]

I. Daubechies and G. Teschke, Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising,, Applied and Computational Harmonic Analysis, 19 (2005), 1. doi: 10.1016/j.acha.2004.12.004.

[11]

I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", SIAM, (1999).

[12]

L. C. Evans and Y. Yu, Various properties of solutions of the infinity-Laplacian equation,, Communications in Partial Differential Equations, 30 (2005), 1401. doi: 10.1080/03605300500258956.

[13]

J. B. Garnett, T. M. Le, Y. Meyer and L. A. Vese, Image decompositions using bounded variation and generalized homogeneous besov spaces,, Applied and Computational Harmonic Analysis, 23 (2007), 25. doi: 10.1016/j.acha.2007.01.005.

[14]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, Multiscale Modeling & Simulation, 7 (2009), 1005. doi: 10.1137/070698592.

[15]

J. Gilles, Noisy image decomposition: A new structure, texture and noise model based on local adaptivity,, Journal of Mathematical Imaging and Vision, 28 (2007), 285. doi: 10.1007/s10851-007-0020-y.

[16]

J. Gilles and Y. Meyer, Properties of BV-G structures + textures decomposition models. Application to road detection in satellite images,, IEEE Transactions on Image Processing}, 19 (2010), 2793. doi: 10.1109/TIP.2010.2049946.

[17]

Y. Kim and L. Vese, Image recovery using functions of bounded variation and sobolev spaces of negative differentiability,, Inverse Problems and Imaging, 3 (2009), 43. doi: 10.3934/ipi.2009.3.43.

[18]

T. M. Le, L. H. Lieu and L. A. Vese, $(\phi,\phi*)$ image decomposition models and minimization algorithms,, Journal of Mathematical Imaging and Vision, 33 (2009), 135. doi: 10.1007/s10851-008-0130-1.

[19]

T. M. Le and L. A. Vese, Image decomposition using total variation and div (bmo),, Multiscale Modeling and Simulation, 4 (2005), 390. doi: 10.1137/040610052.

[20]

L. H. Lieu and L. A. Vese, Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces,, Applied Mathematics and Optimization, 58 (2008), 167. doi: 10.1007/s00245-008-9047-8.

[21]

G. Lu and P. Wang, Inhomogeneous infinity Laplace equation,, Advances in Mathematics, 217 (2008), 1838. doi: 10.1016/j.aim.2007.11.020.

[22]

Y. Meyer, "Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures,", University Lecture Series, 22 (2001).

[23]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Communications on Pure and Applied Mathematics, 42 (1989), 577. doi: 10.1002/cpa.3160420503.

[24]

S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the h1,, Multiscale Modeling & Simulation, 1 (2003), 349. doi: 10.1137/S1540345902416247.

[25]

R. J. Renka, A simple explanation of the sobolev gradient method,, (2006)., (2006).

[26]

W. B. Richardson, Sobolev gradient preconditioning for image-processing PDEs,, Communications in Numerical Methods in Engineering, 24 (2006), 493. doi: 10.1002/cnm.951.

[27]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F.

[28]

Hayden Schaeffer and Stanley Osher, A low patch-rank interpretation of texture,, SIAM Journal on Imaging Sciences, 6 (2013), 226. doi: 10.1137/110854989.

[29]

J. Shen, Piecewise $H^{-1} -H^0 - H^1$ images and the Mumford-Shah-Sobolev model for segmented image decomposition,, APPL. MATH. RES. EXP, 4 (2005).

[30]

G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, International Journal of Computer Vision, 73 (2007), 345.

[31]

L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing,, Journal of Scientific Computing, 19 (2002), 553. doi: 10.1023/A:1025384832106.

[32]

L. A. Vese and S. J. Osher, Image denoising and decomposition with total variation minimization and oscillatory functions,, Journal of Mathematical Imaging and Vision, 20 (2004), 7. doi: 10.1023/B:JMIV.0000011316.54027.6a.

show all references

References:
[1]

G. Aubert and P. Kornprobst, "Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations,", Second edition, 147 (2006).

[2]

Gilles Aubert and Jean-François Aujol, Modeling very oscillating signals. Application to image processing,, Applied Mathematics and Optimization, 51 (2005), 163. doi: 10.1007/s00245-004-0812-z.

[3]

J.-F. Aujol, "Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Équations aux Dérivées Partielles,", Ph.D thesis, (2004).

[4]

J.-F. Aujol and T. F. Chan, Combining geometrical and textured information to perform image classification,, Journal of Visual Communication and Image Representation, 17 (2006), 1004. doi: 10.1016/j.jvcir.2006.02.001.

[5]

J.-F. Aujol and S. H. Kang, Color image decomposition and restoration,, Journal of Visual Communication and Image Representation, 17 (2006), 916. doi: 10.1016/j.jvcir.2005.02.001.

[6]

Jean-François Aujol, Gilles Aubert, Laure Blanc-Féraud and Antonin Chambolle, Image decomposition into a bounded variation component and an oscillating component,, Journal of Mathematical Imaging and Vision, 22 (2005), 71. doi: 10.1007/s10851-005-4783-8.

[7]

L. Bar, N. Sochen and N. Kiryati, Semi-blind image restoration via Mumford-Shah regularization,, Image Processing, 15 (2006), 483. doi: 10.1109/TIP.2005.863120.

[8]

M. Bertalmio, L. Vese, G. Sapiro and S. Osher, Simultaneous structure and texture image inpainting,, IEEE Transactions on Image Processing, 12 (2003), 882.

[9]

M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian,, Calculus of Variations and Partial Differential Equations, 13 (2001), 123.

[10]

I. Daubechies and G. Teschke, Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising,, Applied and Computational Harmonic Analysis, 19 (2005), 1. doi: 10.1016/j.acha.2004.12.004.

[11]

I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", SIAM, (1999).

[12]

L. C. Evans and Y. Yu, Various properties of solutions of the infinity-Laplacian equation,, Communications in Partial Differential Equations, 30 (2005), 1401. doi: 10.1080/03605300500258956.

[13]

J. B. Garnett, T. M. Le, Y. Meyer and L. A. Vese, Image decompositions using bounded variation and generalized homogeneous besov spaces,, Applied and Computational Harmonic Analysis, 23 (2007), 25. doi: 10.1016/j.acha.2007.01.005.

[14]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, Multiscale Modeling & Simulation, 7 (2009), 1005. doi: 10.1137/070698592.

[15]

J. Gilles, Noisy image decomposition: A new structure, texture and noise model based on local adaptivity,, Journal of Mathematical Imaging and Vision, 28 (2007), 285. doi: 10.1007/s10851-007-0020-y.

[16]

J. Gilles and Y. Meyer, Properties of BV-G structures + textures decomposition models. Application to road detection in satellite images,, IEEE Transactions on Image Processing}, 19 (2010), 2793. doi: 10.1109/TIP.2010.2049946.

[17]

Y. Kim and L. Vese, Image recovery using functions of bounded variation and sobolev spaces of negative differentiability,, Inverse Problems and Imaging, 3 (2009), 43. doi: 10.3934/ipi.2009.3.43.

[18]

T. M. Le, L. H. Lieu and L. A. Vese, $(\phi,\phi*)$ image decomposition models and minimization algorithms,, Journal of Mathematical Imaging and Vision, 33 (2009), 135. doi: 10.1007/s10851-008-0130-1.

[19]

T. M. Le and L. A. Vese, Image decomposition using total variation and div (bmo),, Multiscale Modeling and Simulation, 4 (2005), 390. doi: 10.1137/040610052.

[20]

L. H. Lieu and L. A. Vese, Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces,, Applied Mathematics and Optimization, 58 (2008), 167. doi: 10.1007/s00245-008-9047-8.

[21]

G. Lu and P. Wang, Inhomogeneous infinity Laplace equation,, Advances in Mathematics, 217 (2008), 1838. doi: 10.1016/j.aim.2007.11.020.

[22]

Y. Meyer, "Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures,", University Lecture Series, 22 (2001).

[23]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Communications on Pure and Applied Mathematics, 42 (1989), 577. doi: 10.1002/cpa.3160420503.

[24]

S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the h1,, Multiscale Modeling & Simulation, 1 (2003), 349. doi: 10.1137/S1540345902416247.

[25]

R. J. Renka, A simple explanation of the sobolev gradient method,, (2006)., (2006).

[26]

W. B. Richardson, Sobolev gradient preconditioning for image-processing PDEs,, Communications in Numerical Methods in Engineering, 24 (2006), 493. doi: 10.1002/cnm.951.

[27]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F.

[28]

Hayden Schaeffer and Stanley Osher, A low patch-rank interpretation of texture,, SIAM Journal on Imaging Sciences, 6 (2013), 226. doi: 10.1137/110854989.

[29]

J. Shen, Piecewise $H^{-1} -H^0 - H^1$ images and the Mumford-Shah-Sobolev model for segmented image decomposition,, APPL. MATH. RES. EXP, 4 (2005).

[30]

G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, International Journal of Computer Vision, 73 (2007), 345.

[31]

L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing,, Journal of Scientific Computing, 19 (2002), 553. doi: 10.1023/A:1025384832106.

[32]

L. A. Vese and S. J. Osher, Image denoising and decomposition with total variation minimization and oscillatory functions,, Journal of Mathematical Imaging and Vision, 20 (2004), 7. doi: 10.1023/B:JMIV.0000011316.54027.6a.

[1]

Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076

[2]

Thomas Honold, Ivan Landjev. The dual construction for arcs in projective Hjelmslev spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 11-21. doi: 10.3934/amc.2011.5.11

[3]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[4]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[5]

Bang-Xian Han. New characterizations of Ricci curvature on RCD metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4915-4927. doi: 10.3934/dcds.2018214

[6]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[7]

Jian-Feng Cai, Raymond H. Chan, Zuowei Shen. Simultaneous cartoon and texture inpainting. Inverse Problems & Imaging, 2010, 4 (3) : 379-395. doi: 10.3934/ipi.2010.4.379

[8]

Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641

[9]

Pierre-Étienne Druet. Higher $L^p$ regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 475-496. doi: 10.3934/dcdss.2015.8.475

[10]

Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems & Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019

[11]

Jie Huang, Marco Donatelli, Raymond H. Chan. Nonstationary iterated thresholding algorithms for image deblurring. Inverse Problems & Imaging, 2013, 7 (3) : 717-736. doi: 10.3934/ipi.2013.7.717

[12]

Grégory Faye, Pascal Chossat. A spatialized model of visual texture perception using the structure tensor formalism. Networks & Heterogeneous Media, 2013, 8 (1) : 211-260. doi: 10.3934/nhm.2013.8.211

[13]

Hong Zhou, M. Gregory Forest, Qi Wang. Anchoring-induced texture & shear banding of nematic polymers in shear cells. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 707-733. doi: 10.3934/dcdsb.2007.8.707

[14]

Nam-Yong Lee, Bradley J. Lucier. Preconditioned conjugate gradient method for boundary artifact-free image deblurring. Inverse Problems & Imaging, 2016, 10 (1) : 195-225. doi: 10.3934/ipi.2016.10.195

[15]

Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563

[16]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[17]

Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055

[18]

C.M. Elliott, S. A. Smitheman. Analysis of the TV regularization and $H^{-1}$ fidelity model for decomposing animage into cartoon plus texture. Communications on Pure & Applied Analysis, 2007, 6 (4) : 917-936. doi: 10.3934/cpaa.2007.6.917

[19]

Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082

[20]

Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]