August  2013, 7(3): 947-959. doi: 10.3934/ipi.2013.7.947

3D adaptive finite element method for a phase field model for the moving contact line problems

1. 

Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

2. 

Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

3. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received  July 2012 Revised  December 2012 Published  September 2013

In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. Therefore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable.
Citation: Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947
References:
[1]

H. D. Ceniceros, Rudimar L. Nos and Alexandre M. Roma, Theree-dimensional, fully adaptive simulations of phase-field fluid models,, J. Comput. Phys., 229 (2010), 6135.  doi: 10.1016/j.jcp.2010.04.045.  Google Scholar

[2]

Qingming Chang and J. I. D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method,, Microfluid Nanofluid, 2 (2006), 309.  doi: 10.1007/s10404-005-0075-2.  Google Scholar

[3]

Yana Di, Ruo Li and Tao Tang, A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows,, Commun. Comput. Phys., 3 (2008), 582.   Google Scholar

[4]

Yana Di and Xiao-Ping Wang, Precursor simulations in spreading using a multi-mesh adaptive finite elment method,, J. Comput. Phys., 228 (2009), 1380.  doi: 10.1016/j.jcp.2008.10.028.  Google Scholar

[5]

Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition,, SIAM J. Numer. Anal., 28 (1991), 1310.  doi: 10.1137/0728069.  Google Scholar

[6]

Qiang Du and Jian Zhang, Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations,, SIAM J. Sci. Comput., 30 (2008), 1634.  doi: 10.1137/060656449.  Google Scholar

[7]

A. Dupuis and J. M. Yeomans, Droplet dynamics on patterned substrates,, Pramana J. Phys., 64 (2005), 1019.  doi: 10.1007/BF02704164.  Google Scholar

[8]

Xiaobing Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two phase flows,, SIAM J. Numer. Anal., 44 (2006), 1049.  doi: 10.1137/050638333.  Google Scholar

[9]

Xiaobing Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation,, Numer. Math., 99 (2004), 47.  doi: 10.1007/s00211-004-0546-5.  Google Scholar

[10]

Min Gao and Xiao-Ping Wang, A gradient stable scheme for a phase field model for the moving contact line problem,, J. Comput. Phys., 231 (2012), 1372.  doi: 10.1016/j.jcp.2011.10.015.  Google Scholar

[11]

V. Girault and P.-A. Raviart, "Finite Element Method for Navier-Stokes Equations. Theory and Algorithms,", Springer Series in Computational Mathematics, 5 (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

Qiaolin He, R. Glowinski and Xiao-Ping Wang, A least square/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line,, J. Comput. Phys., 230 (2011), 4991.  doi: 10.1016/j.jcp.2011.03.022.  Google Scholar

[13]

Yinnian He, Yunxian Liu and Tao Tang, On large time-stepping methods for the Cahn-Hilliard equation,, Appl. Numer. Math., 57 (2007), 616.  doi: 10.1016/j.apnum.2006.07.026.  Google Scholar

[14]

Xianliang Hu, Ruo Li and Tao Tang, A multi-mesh adaptive finite element approximation to phase field models,, Commun. Comput. Phys., 5 (2009), 1012.   Google Scholar

[15]

J. Léopoldés, A. Dupuis, D. G. Bucknall and J. M. Yeomans, Jetting micron-scale droplets onto chemically heterogeneous surfaces,, Langmuir, 19 (2003), 9818.  doi: 10.1021/la0353069.  Google Scholar

[16]

Xiongping Luo, Xiao-Ping Wang, Tiezheng Qian and Ping Sheng, Moving contact line over undulating surfaces,, Solid. Stat. Commun., 139 (2006), 623.  doi: 10.1016/j.ssc.2006.04.040.  Google Scholar

[17]

Nikolas Provatas, Nigel Goldenfeld and Jonathan Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures,, J. Comput. Phys., 148 (1999), 265.  doi: 10.1006/jcph.1998.6122.  Google Scholar

[18]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, Molecular scale contact line hydrodynamics of immiscible flows,, Phys. Rev. E, 68 (2003).  doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[19]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows,, Commun. Comput. Phys., 1 (2006), 1.   Google Scholar

[20]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, A variational approach to the moving contact line hydrodynamics,, J. Fluid Mech., 564 (2006), 333.  doi: 10.1017/S0022112006001935.  Google Scholar

[21]

Jie Shen and Xiaofeng Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities,, SIAM J. Sci. Comput., 32 (2010), 1159.  doi: 10.1137/09075860X.  Google Scholar

[22]

R. Verfurth, "A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,", Wiley-Teubner, (1996).   Google Scholar

[23]

J. M. Yeomans and H.Kusumaatmaja, Modelling drop dynamics on patterned surfaces,, Bull. Pol. Acad. Sci.: Tech. Sci., 55 (2007), 203.   Google Scholar

[24]

Pengtao Yue, James J. Feng, Chun Liu and Jie Shen, A diffuse-interface method for simulating two-phase flows of complex fluids,, J. Fluid Mech., 515 (2004), 293.  doi: 10.1017/S0022112004000370.  Google Scholar

[25]

Pengtao Yue, Chunfeng Zhou, James J. Feng, Carl F. Ollivier-Gooch and Howard H. Hu, Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing,, J. Comput. Phys., 219 (2006), 47.  doi: 10.1016/j.jcp.2006.03.016.  Google Scholar

[26]

Linbo Zhang, Parallel hierarchical grid., Available from: , ().   Google Scholar

[27]

Chunfeng Zhou, Pengtao Yue and James J. Feng, 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids,, J. Comput. Phys., 229 (2010), 498.  doi: 10.1016/j.jcp.2009.09.039.  Google Scholar

[28]

Xiao-Ping Wang, Tiezheng Qian and Ping Sheng, Moving contact line on chemically patterned surfaces,, J. Fluid Mech., 605 (2008), 59.  doi: 10.1017/S0022112008001456.  Google Scholar

show all references

References:
[1]

H. D. Ceniceros, Rudimar L. Nos and Alexandre M. Roma, Theree-dimensional, fully adaptive simulations of phase-field fluid models,, J. Comput. Phys., 229 (2010), 6135.  doi: 10.1016/j.jcp.2010.04.045.  Google Scholar

[2]

Qingming Chang and J. I. D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method,, Microfluid Nanofluid, 2 (2006), 309.  doi: 10.1007/s10404-005-0075-2.  Google Scholar

[3]

Yana Di, Ruo Li and Tao Tang, A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows,, Commun. Comput. Phys., 3 (2008), 582.   Google Scholar

[4]

Yana Di and Xiao-Ping Wang, Precursor simulations in spreading using a multi-mesh adaptive finite elment method,, J. Comput. Phys., 228 (2009), 1380.  doi: 10.1016/j.jcp.2008.10.028.  Google Scholar

[5]

Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition,, SIAM J. Numer. Anal., 28 (1991), 1310.  doi: 10.1137/0728069.  Google Scholar

[6]

Qiang Du and Jian Zhang, Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations,, SIAM J. Sci. Comput., 30 (2008), 1634.  doi: 10.1137/060656449.  Google Scholar

[7]

A. Dupuis and J. M. Yeomans, Droplet dynamics on patterned substrates,, Pramana J. Phys., 64 (2005), 1019.  doi: 10.1007/BF02704164.  Google Scholar

[8]

Xiaobing Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two phase flows,, SIAM J. Numer. Anal., 44 (2006), 1049.  doi: 10.1137/050638333.  Google Scholar

[9]

Xiaobing Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation,, Numer. Math., 99 (2004), 47.  doi: 10.1007/s00211-004-0546-5.  Google Scholar

[10]

Min Gao and Xiao-Ping Wang, A gradient stable scheme for a phase field model for the moving contact line problem,, J. Comput. Phys., 231 (2012), 1372.  doi: 10.1016/j.jcp.2011.10.015.  Google Scholar

[11]

V. Girault and P.-A. Raviart, "Finite Element Method for Navier-Stokes Equations. Theory and Algorithms,", Springer Series in Computational Mathematics, 5 (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

Qiaolin He, R. Glowinski and Xiao-Ping Wang, A least square/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line,, J. Comput. Phys., 230 (2011), 4991.  doi: 10.1016/j.jcp.2011.03.022.  Google Scholar

[13]

Yinnian He, Yunxian Liu and Tao Tang, On large time-stepping methods for the Cahn-Hilliard equation,, Appl. Numer. Math., 57 (2007), 616.  doi: 10.1016/j.apnum.2006.07.026.  Google Scholar

[14]

Xianliang Hu, Ruo Li and Tao Tang, A multi-mesh adaptive finite element approximation to phase field models,, Commun. Comput. Phys., 5 (2009), 1012.   Google Scholar

[15]

J. Léopoldés, A. Dupuis, D. G. Bucknall and J. M. Yeomans, Jetting micron-scale droplets onto chemically heterogeneous surfaces,, Langmuir, 19 (2003), 9818.  doi: 10.1021/la0353069.  Google Scholar

[16]

Xiongping Luo, Xiao-Ping Wang, Tiezheng Qian and Ping Sheng, Moving contact line over undulating surfaces,, Solid. Stat. Commun., 139 (2006), 623.  doi: 10.1016/j.ssc.2006.04.040.  Google Scholar

[17]

Nikolas Provatas, Nigel Goldenfeld and Jonathan Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures,, J. Comput. Phys., 148 (1999), 265.  doi: 10.1006/jcph.1998.6122.  Google Scholar

[18]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, Molecular scale contact line hydrodynamics of immiscible flows,, Phys. Rev. E, 68 (2003).  doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[19]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows,, Commun. Comput. Phys., 1 (2006), 1.   Google Scholar

[20]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, A variational approach to the moving contact line hydrodynamics,, J. Fluid Mech., 564 (2006), 333.  doi: 10.1017/S0022112006001935.  Google Scholar

[21]

Jie Shen and Xiaofeng Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities,, SIAM J. Sci. Comput., 32 (2010), 1159.  doi: 10.1137/09075860X.  Google Scholar

[22]

R. Verfurth, "A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,", Wiley-Teubner, (1996).   Google Scholar

[23]

J. M. Yeomans and H.Kusumaatmaja, Modelling drop dynamics on patterned surfaces,, Bull. Pol. Acad. Sci.: Tech. Sci., 55 (2007), 203.   Google Scholar

[24]

Pengtao Yue, James J. Feng, Chun Liu and Jie Shen, A diffuse-interface method for simulating two-phase flows of complex fluids,, J. Fluid Mech., 515 (2004), 293.  doi: 10.1017/S0022112004000370.  Google Scholar

[25]

Pengtao Yue, Chunfeng Zhou, James J. Feng, Carl F. Ollivier-Gooch and Howard H. Hu, Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing,, J. Comput. Phys., 219 (2006), 47.  doi: 10.1016/j.jcp.2006.03.016.  Google Scholar

[26]

Linbo Zhang, Parallel hierarchical grid., Available from: , ().   Google Scholar

[27]

Chunfeng Zhou, Pengtao Yue and James J. Feng, 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids,, J. Comput. Phys., 229 (2010), 498.  doi: 10.1016/j.jcp.2009.09.039.  Google Scholar

[28]

Xiao-Ping Wang, Tiezheng Qian and Ping Sheng, Moving contact line on chemically patterned surfaces,, J. Fluid Mech., 605 (2008), 59.  doi: 10.1017/S0022112008001456.  Google Scholar

[1]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[3]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[6]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[7]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[8]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[9]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[10]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[11]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[12]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[13]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[16]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[17]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[18]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[19]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[20]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]