August  2013, 7(3): 967-986. doi: 10.3934/ipi.2013.7.967

Energy conserving local discontinuous Galerkin methods for wave propagation problems

1. 

Computer Science and Mathematics Division, Oak Ridge National Laboratory, and Department of Mathematics, University of Tennessee, Oak Ridge, TN 37831, United States

2. 

Department of Mathematics, Mathematica Biosciences Institute, The Ohio State University, Columbus, OH 43221

3. 

Division of Applied Mathematics, Brown University, Providence, RI 02912

Received  May 2012 Revised  February 2013 Published  September 2013

Wave propagation problems arise in a wide range of applications. The energy conserving property is one of the guiding principles for numerical algorithms, in order to minimize the phase or shape errors after long time integration. In this paper, we develop and analyze a local discontinuous Galerkin (LDG) method for solving the wave equation. We prove optimal error estimates, superconvergence toward a particular projection of the exact solution, and the energy conserving property for the semi-discrete formulation. The analysis is extended to the fully discrete LDG scheme, with the centered second-order time discretization (the leap-frog scheme). Our numerical experiments demonstrate optimal rates of convergence and superconvergence. We also show that the shape of the solution, after long time integration, is well preserved due to the energy conserving property.
Citation: Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967
References:
[1]

S. Adjerid and H. Temimi, A discontinuous Galerkin method for the wave equation,, Computer Methods in Applied Mechanics and Engineering, 200 (2011), 837.  doi: 10.1016/j.cma.2010.10.008.  Google Scholar

[2]

M. Baccouch, A local discontinuous Galerkin method for the second-order wave equation,, Computer Methods in Applied Mechanics and Engineering, 209/212 (2012), 129.  doi: 10.1016/j.cma.2011.10.012.  Google Scholar

[3]

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations,, Journal of Computational Physics, 131 (1997), 267.  doi: 10.1006/jcph.1996.5572.  Google Scholar

[4]

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection diffusion equations in one space dimension,, SIAM Journal on Numerical Analysis, 47 (2010), 4044.  doi: 10.1137/090747701.  Google Scholar

[5]

E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for wave propagation,, SIAM Journal on Numerical Analysis, 44 (2006), 2131.  doi: 10.1137/050641193.  Google Scholar

[6]

E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions,, SIAM Journal on Numerical Analysis, 47 (2009), 3820.  doi: 10.1137/080729062.  Google Scholar

[7]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", Studies in Mathematics and its Applications, (1978).   Google Scholar

[8]

B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case,, Mathematics of Computation, 54 (1990), 545.  doi: 10.2307/2008501.  Google Scholar

[9]

B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One dimensional systems,, Journal of Computational Physics, 84 (1989), 90.  doi: 10.1016/0021-9991(89)90183-6.  Google Scholar

[10]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework,, Mathematics of Computation, 52 (1989), 411.  doi: 10.2307/2008474.  Google Scholar

[11]

B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems,, SIAM Journal on Numerical Analysis, 35 (1998), 2440.  doi: 10.1137/S0036142997316712.  Google Scholar

[12]

B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems,, Journal of Computational Physics, 141 (1998), 199.  doi: 10.1006/jcph.1998.5892.  Google Scholar

[13]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,, Journal of Scientific Computing, 16 (2001), 173.  doi: 10.1023/A:1012873910884.  Google Scholar

[14]

D. R. Durran, "Numerical Methods for Wave Equations in Geophysical Fluid Dynamics,", Texts in Applied Mathematics, 32 (1999).   Google Scholar

[15]

R. S. Falk and G. R. Richter, Explicit finite element methods for symmetric hyperbolic equations,, SIAM Journal on Numerical Analysis, 36 (1999), 935.  doi: 10.1137/S0036142997329463.  Google Scholar

[16]

L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes,, Mathematical Modelling and Numerical Analysis, 39 (2005), 1149.  doi: 10.1051/m2an:2005049.  Google Scholar

[17]

D. A. French and T. E. Peterson, A continuous space-time finite element method for the wave equation,, Mathematics of Computation, 65 (1996), 491.  doi: 10.1090/S0025-5718-96-00685-0.  Google Scholar

[18]

M. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation,, SIAM Journal on Numerical Analysis, 44 (2006), 2408.  doi: 10.1137/05063194X.  Google Scholar

[19]

M. Grote and D. Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation,, Journal of Scientific Computing, 40 (2009), 257.  doi: 10.1007/s10915-008-9247-z.  Google Scholar

[20]

J. S. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations,, Journal of Computational Physics, 181 (2002), 186.  doi: 10.1006/jcph.2002.7118.  Google Scholar

[21]

N. A. Kampanis, J. Ekaterinaris and V. Dougalis, eds., "Effective Computational Methods for Wave Propagation,", Numerical Insights, 5 (2008).  doi: 10.1201/9781420010879.  Google Scholar

[22]

P. Monk and G. R. Richter, A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media,, Journal of Scientific Computing, 22/23 (2005), 443.  doi: 10.1007/s10915-004-4132-5.  Google Scholar

[23]

B. Rivieère and M. F. Wheeler, Discontinuous finite element methods for acoustic and elastic wave problems,, in, 329 (2003), 271.  doi: 10.1090/conm/329/05862.  Google Scholar

[24]

A. Safjan and J. T. Oden, High-order taylor-galerkin and adaptive hp methods for second-order hyperbolic systems: Application to elastodynamics,, Computer Methods in Applied Mechanics and Engineering, 103 (1993), 187.  doi: 10.1016/0045-7825(93)90046-Z.  Google Scholar

show all references

References:
[1]

S. Adjerid and H. Temimi, A discontinuous Galerkin method for the wave equation,, Computer Methods in Applied Mechanics and Engineering, 200 (2011), 837.  doi: 10.1016/j.cma.2010.10.008.  Google Scholar

[2]

M. Baccouch, A local discontinuous Galerkin method for the second-order wave equation,, Computer Methods in Applied Mechanics and Engineering, 209/212 (2012), 129.  doi: 10.1016/j.cma.2011.10.012.  Google Scholar

[3]

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations,, Journal of Computational Physics, 131 (1997), 267.  doi: 10.1006/jcph.1996.5572.  Google Scholar

[4]

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection diffusion equations in one space dimension,, SIAM Journal on Numerical Analysis, 47 (2010), 4044.  doi: 10.1137/090747701.  Google Scholar

[5]

E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for wave propagation,, SIAM Journal on Numerical Analysis, 44 (2006), 2131.  doi: 10.1137/050641193.  Google Scholar

[6]

E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions,, SIAM Journal on Numerical Analysis, 47 (2009), 3820.  doi: 10.1137/080729062.  Google Scholar

[7]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", Studies in Mathematics and its Applications, (1978).   Google Scholar

[8]

B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case,, Mathematics of Computation, 54 (1990), 545.  doi: 10.2307/2008501.  Google Scholar

[9]

B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One dimensional systems,, Journal of Computational Physics, 84 (1989), 90.  doi: 10.1016/0021-9991(89)90183-6.  Google Scholar

[10]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework,, Mathematics of Computation, 52 (1989), 411.  doi: 10.2307/2008474.  Google Scholar

[11]

B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems,, SIAM Journal on Numerical Analysis, 35 (1998), 2440.  doi: 10.1137/S0036142997316712.  Google Scholar

[12]

B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems,, Journal of Computational Physics, 141 (1998), 199.  doi: 10.1006/jcph.1998.5892.  Google Scholar

[13]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,, Journal of Scientific Computing, 16 (2001), 173.  doi: 10.1023/A:1012873910884.  Google Scholar

[14]

D. R. Durran, "Numerical Methods for Wave Equations in Geophysical Fluid Dynamics,", Texts in Applied Mathematics, 32 (1999).   Google Scholar

[15]

R. S. Falk and G. R. Richter, Explicit finite element methods for symmetric hyperbolic equations,, SIAM Journal on Numerical Analysis, 36 (1999), 935.  doi: 10.1137/S0036142997329463.  Google Scholar

[16]

L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes,, Mathematical Modelling and Numerical Analysis, 39 (2005), 1149.  doi: 10.1051/m2an:2005049.  Google Scholar

[17]

D. A. French and T. E. Peterson, A continuous space-time finite element method for the wave equation,, Mathematics of Computation, 65 (1996), 491.  doi: 10.1090/S0025-5718-96-00685-0.  Google Scholar

[18]

M. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation,, SIAM Journal on Numerical Analysis, 44 (2006), 2408.  doi: 10.1137/05063194X.  Google Scholar

[19]

M. Grote and D. Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation,, Journal of Scientific Computing, 40 (2009), 257.  doi: 10.1007/s10915-008-9247-z.  Google Scholar

[20]

J. S. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations,, Journal of Computational Physics, 181 (2002), 186.  doi: 10.1006/jcph.2002.7118.  Google Scholar

[21]

N. A. Kampanis, J. Ekaterinaris and V. Dougalis, eds., "Effective Computational Methods for Wave Propagation,", Numerical Insights, 5 (2008).  doi: 10.1201/9781420010879.  Google Scholar

[22]

P. Monk and G. R. Richter, A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media,, Journal of Scientific Computing, 22/23 (2005), 443.  doi: 10.1007/s10915-004-4132-5.  Google Scholar

[23]

B. Rivieère and M. F. Wheeler, Discontinuous finite element methods for acoustic and elastic wave problems,, in, 329 (2003), 271.  doi: 10.1090/conm/329/05862.  Google Scholar

[24]

A. Safjan and J. T. Oden, High-order taylor-galerkin and adaptive hp methods for second-order hyperbolic systems: Application to elastodynamics,, Computer Methods in Applied Mechanics and Engineering, 103 (1993), 187.  doi: 10.1016/0045-7825(93)90046-Z.  Google Scholar

[1]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[2]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[3]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[4]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[5]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[6]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[7]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[8]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[9]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[10]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[11]

Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6979-6993. doi: 10.3934/dcds.2019240

[12]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[13]

Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401

[14]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[15]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[16]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[17]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[18]

Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147

[19]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic & Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

[20]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]