August  2013, 7(3): 967-986. doi: 10.3934/ipi.2013.7.967

Energy conserving local discontinuous Galerkin methods for wave propagation problems

1. 

Computer Science and Mathematics Division, Oak Ridge National Laboratory, and Department of Mathematics, University of Tennessee, Oak Ridge, TN 37831, United States

2. 

Department of Mathematics, Mathematica Biosciences Institute, The Ohio State University, Columbus, OH 43221

3. 

Division of Applied Mathematics, Brown University, Providence, RI 02912

Received  May 2012 Revised  February 2013 Published  September 2013

Wave propagation problems arise in a wide range of applications. The energy conserving property is one of the guiding principles for numerical algorithms, in order to minimize the phase or shape errors after long time integration. In this paper, we develop and analyze a local discontinuous Galerkin (LDG) method for solving the wave equation. We prove optimal error estimates, superconvergence toward a particular projection of the exact solution, and the energy conserving property for the semi-discrete formulation. The analysis is extended to the fully discrete LDG scheme, with the centered second-order time discretization (the leap-frog scheme). Our numerical experiments demonstrate optimal rates of convergence and superconvergence. We also show that the shape of the solution, after long time integration, is well preserved due to the energy conserving property.
Citation: Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967
References:
[1]

S. Adjerid and H. Temimi, A discontinuous Galerkin method for the wave equation,, Computer Methods in Applied Mechanics and Engineering, 200 (2011), 837.  doi: 10.1016/j.cma.2010.10.008.  Google Scholar

[2]

M. Baccouch, A local discontinuous Galerkin method for the second-order wave equation,, Computer Methods in Applied Mechanics and Engineering, 209/212 (2012), 129.  doi: 10.1016/j.cma.2011.10.012.  Google Scholar

[3]

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations,, Journal of Computational Physics, 131 (1997), 267.  doi: 10.1006/jcph.1996.5572.  Google Scholar

[4]

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection diffusion equations in one space dimension,, SIAM Journal on Numerical Analysis, 47 (2010), 4044.  doi: 10.1137/090747701.  Google Scholar

[5]

E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for wave propagation,, SIAM Journal on Numerical Analysis, 44 (2006), 2131.  doi: 10.1137/050641193.  Google Scholar

[6]

E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions,, SIAM Journal on Numerical Analysis, 47 (2009), 3820.  doi: 10.1137/080729062.  Google Scholar

[7]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", Studies in Mathematics and its Applications, (1978).   Google Scholar

[8]

B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case,, Mathematics of Computation, 54 (1990), 545.  doi: 10.2307/2008501.  Google Scholar

[9]

B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One dimensional systems,, Journal of Computational Physics, 84 (1989), 90.  doi: 10.1016/0021-9991(89)90183-6.  Google Scholar

[10]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework,, Mathematics of Computation, 52 (1989), 411.  doi: 10.2307/2008474.  Google Scholar

[11]

B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems,, SIAM Journal on Numerical Analysis, 35 (1998), 2440.  doi: 10.1137/S0036142997316712.  Google Scholar

[12]

B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems,, Journal of Computational Physics, 141 (1998), 199.  doi: 10.1006/jcph.1998.5892.  Google Scholar

[13]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,, Journal of Scientific Computing, 16 (2001), 173.  doi: 10.1023/A:1012873910884.  Google Scholar

[14]

D. R. Durran, "Numerical Methods for Wave Equations in Geophysical Fluid Dynamics,", Texts in Applied Mathematics, 32 (1999).   Google Scholar

[15]

R. S. Falk and G. R. Richter, Explicit finite element methods for symmetric hyperbolic equations,, SIAM Journal on Numerical Analysis, 36 (1999), 935.  doi: 10.1137/S0036142997329463.  Google Scholar

[16]

L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes,, Mathematical Modelling and Numerical Analysis, 39 (2005), 1149.  doi: 10.1051/m2an:2005049.  Google Scholar

[17]

D. A. French and T. E. Peterson, A continuous space-time finite element method for the wave equation,, Mathematics of Computation, 65 (1996), 491.  doi: 10.1090/S0025-5718-96-00685-0.  Google Scholar

[18]

M. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation,, SIAM Journal on Numerical Analysis, 44 (2006), 2408.  doi: 10.1137/05063194X.  Google Scholar

[19]

M. Grote and D. Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation,, Journal of Scientific Computing, 40 (2009), 257.  doi: 10.1007/s10915-008-9247-z.  Google Scholar

[20]

J. S. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations,, Journal of Computational Physics, 181 (2002), 186.  doi: 10.1006/jcph.2002.7118.  Google Scholar

[21]

N. A. Kampanis, J. Ekaterinaris and V. Dougalis, eds., "Effective Computational Methods for Wave Propagation,", Numerical Insights, 5 (2008).  doi: 10.1201/9781420010879.  Google Scholar

[22]

P. Monk and G. R. Richter, A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media,, Journal of Scientific Computing, 22/23 (2005), 443.  doi: 10.1007/s10915-004-4132-5.  Google Scholar

[23]

B. Rivieère and M. F. Wheeler, Discontinuous finite element methods for acoustic and elastic wave problems,, in, 329 (2003), 271.  doi: 10.1090/conm/329/05862.  Google Scholar

[24]

A. Safjan and J. T. Oden, High-order taylor-galerkin and adaptive hp methods for second-order hyperbolic systems: Application to elastodynamics,, Computer Methods in Applied Mechanics and Engineering, 103 (1993), 187.  doi: 10.1016/0045-7825(93)90046-Z.  Google Scholar

show all references

References:
[1]

S. Adjerid and H. Temimi, A discontinuous Galerkin method for the wave equation,, Computer Methods in Applied Mechanics and Engineering, 200 (2011), 837.  doi: 10.1016/j.cma.2010.10.008.  Google Scholar

[2]

M. Baccouch, A local discontinuous Galerkin method for the second-order wave equation,, Computer Methods in Applied Mechanics and Engineering, 209/212 (2012), 129.  doi: 10.1016/j.cma.2011.10.012.  Google Scholar

[3]

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations,, Journal of Computational Physics, 131 (1997), 267.  doi: 10.1006/jcph.1996.5572.  Google Scholar

[4]

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection diffusion equations in one space dimension,, SIAM Journal on Numerical Analysis, 47 (2010), 4044.  doi: 10.1137/090747701.  Google Scholar

[5]

E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for wave propagation,, SIAM Journal on Numerical Analysis, 44 (2006), 2131.  doi: 10.1137/050641193.  Google Scholar

[6]

E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions,, SIAM Journal on Numerical Analysis, 47 (2009), 3820.  doi: 10.1137/080729062.  Google Scholar

[7]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", Studies in Mathematics and its Applications, (1978).   Google Scholar

[8]

B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case,, Mathematics of Computation, 54 (1990), 545.  doi: 10.2307/2008501.  Google Scholar

[9]

B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One dimensional systems,, Journal of Computational Physics, 84 (1989), 90.  doi: 10.1016/0021-9991(89)90183-6.  Google Scholar

[10]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework,, Mathematics of Computation, 52 (1989), 411.  doi: 10.2307/2008474.  Google Scholar

[11]

B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems,, SIAM Journal on Numerical Analysis, 35 (1998), 2440.  doi: 10.1137/S0036142997316712.  Google Scholar

[12]

B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems,, Journal of Computational Physics, 141 (1998), 199.  doi: 10.1006/jcph.1998.5892.  Google Scholar

[13]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,, Journal of Scientific Computing, 16 (2001), 173.  doi: 10.1023/A:1012873910884.  Google Scholar

[14]

D. R. Durran, "Numerical Methods for Wave Equations in Geophysical Fluid Dynamics,", Texts in Applied Mathematics, 32 (1999).   Google Scholar

[15]

R. S. Falk and G. R. Richter, Explicit finite element methods for symmetric hyperbolic equations,, SIAM Journal on Numerical Analysis, 36 (1999), 935.  doi: 10.1137/S0036142997329463.  Google Scholar

[16]

L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes,, Mathematical Modelling and Numerical Analysis, 39 (2005), 1149.  doi: 10.1051/m2an:2005049.  Google Scholar

[17]

D. A. French and T. E. Peterson, A continuous space-time finite element method for the wave equation,, Mathematics of Computation, 65 (1996), 491.  doi: 10.1090/S0025-5718-96-00685-0.  Google Scholar

[18]

M. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation,, SIAM Journal on Numerical Analysis, 44 (2006), 2408.  doi: 10.1137/05063194X.  Google Scholar

[19]

M. Grote and D. Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation,, Journal of Scientific Computing, 40 (2009), 257.  doi: 10.1007/s10915-008-9247-z.  Google Scholar

[20]

J. S. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations,, Journal of Computational Physics, 181 (2002), 186.  doi: 10.1006/jcph.2002.7118.  Google Scholar

[21]

N. A. Kampanis, J. Ekaterinaris and V. Dougalis, eds., "Effective Computational Methods for Wave Propagation,", Numerical Insights, 5 (2008).  doi: 10.1201/9781420010879.  Google Scholar

[22]

P. Monk and G. R. Richter, A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media,, Journal of Scientific Computing, 22/23 (2005), 443.  doi: 10.1007/s10915-004-4132-5.  Google Scholar

[23]

B. Rivieère and M. F. Wheeler, Discontinuous finite element methods for acoustic and elastic wave problems,, in, 329 (2003), 271.  doi: 10.1090/conm/329/05862.  Google Scholar

[24]

A. Safjan and J. T. Oden, High-order taylor-galerkin and adaptive hp methods for second-order hyperbolic systems: Application to elastodynamics,, Computer Methods in Applied Mechanics and Engineering, 103 (1993), 187.  doi: 10.1016/0045-7825(93)90046-Z.  Google Scholar

[1]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[6]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[7]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[8]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[9]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[10]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[11]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[12]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[13]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[14]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[15]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[18]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]