• Previous Article
    Adaptive meshing approach to identification of cracks with electrical impedance tomography
  • IPI Home
  • This Issue
  • Next Article
    Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography
February  2014, 8(1): 103-125. doi: 10.3934/ipi.2014.8.103

Ray transforms on a conformal class of curves

1. 

University of Toronto, Department of Mathematics, Toronto, ON, M5S 2E4, Canada

2. 

Columbia University, Department of Applied Physics and Applied Mathematics, New York, NY, 10025, United States

Received  May 2010 Revised  October 2011 Published  March 2014

We introduce a technique for recovering a sufficiently smooth function from its ray transforms over rotationally related curves in the unit disc of 2-dimensional Euclidean space. The method is based on a complexification of the underlying vector fields defining the initial transport and inversion formulae are then given in a unified form. The method is used to analyze the attenuated ray transform in the same setting.
Citation: Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems and Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103
References:
[1]

L. Ahlfors, Complex Analysis, McGraw-Hill, 1978.

[2]

L. V. Ahlfors, Lectures on Quasiconformal Mappings, University Lecture Series, American Mathematical Society, 2006.

[3]

L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math, 72 (1960), 385-404.

[4]

E. Arbuzov, A. Bukhgeim and S. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Advances in Mathematics, 8 (1998), 1-20.

[5]

K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton University Press, 2009.

[6]

G. Bal, Ray transforms in hyperbolic geometry, J. Math. Pures Appl., 84 (2005), 1362-1392. doi: 10.1016/j.matpur.2005.02.001.

[7]

G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418. doi: 10.1088/0266-5611/20/2/006.

[8]

H. Begehr, Complex Analytic Methods for Partial Differential Equations, World Scientific Publishing Co., 1994.

[9]

C. Berenstein and E. C. Tarabush, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM J. Appl. Math., 56 (1996), 755-764. doi: 10.1137/S0036139994277348.

[10]

P. Colwell, Blaschke Products: Bounded Analytical Functions, University of Michigan Press, 1985.

[11]

L. Ehrenpreis, The Universality of the Radon Transform, Oxford Mathematical Monographs, Oxford University Press, USA, 2003. doi: 10.1093/acprof:oso/9780198509783.001.0001.

[12]

L. C. Evans, Partial Differential Equations, 19 of Graduate Studies in Mathematics, American Mathematical Society, 1998.

[13]

D. Finch, Uniqueness for the X-ray transform in the physical range, Inverse Problems, 2 (1986), 197-203. doi: 10.1088/0266-5611/2/2/010.

[14]

M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2003. doi: 10.1017/CBO9780511791246.

[15]

J. B. Garnett, Bounded Analytic Functions, Springer New York, 1981.

[16]

R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 40 of Graduate Studies in Mathematics, American Mathematical Society, 2006.

[17]

D. Griffiths, Introduction to Elementary Particles, Wiley-VCH, 2008. doi: 10.1002/9783527618460.

[18]

S. Helgason, The Radon Transform, 5 of Progress in Mathematics, Birkhäuser Boston, 1980.

[19]

______, Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators and Spherical Functions), American Mathematical Society, 2000.

[20]

______, The inversion of the x-ray transform on a compact symmetric space, Journal of Lie Theory, 17 (2007), 307-315.

[21]

L. Hormander, Complex Analysis in Several Variables, North Holland, 1990.

[22]

S. S. Romesh Kumar, Inner functions and substitution operators, Acta Sci. Math. (Szegal), 58 (1993), 509-516.

[23]

J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, 176 in Graduate Texts in Mathematics, Springer, 1997.

[24]

F. Natterer, Inversion of the attenuated radon transform, Inverse Problems, 17 (2001), 113-119. doi: 10.1088/0266-5611/17/1/309.

[25]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, (Monographs on Mathematical Modeling and Computation), Society for Industrial Mathematics, 2007. doi: 10.1118/1.1455744.

[26]

Z. Nehari, Conformal Mappings, McGraw-Hill Book Company, Inc., 1952.

[27]

R. Novikov, An inversion formula for the attenuated x-ray transformation, Ark. Math, 40 (2002), 145-167. doi: 10.1007/BF02384507.

[28]

L. Pestov and G. Uhlmann, On characterization of range and inversion formulas for the geodesic x-ray transform, International Math. Research Notices, 80 (2004), 4331-4347. doi: 10.1155/S1073792804142116.

[29]

H. Renelt, Elliptic Systems and Quasiconformal Mappings, John Wiley & Sons Inc, 1988.

[30]

V. Rubakov and S. S. Wilson, Classical Theory of Gauge Fields, Princeton University Press, 2002.

[31]

B. Rubin, Notes on radon transforms in integral geometry, Fract. Calc. Appl. Anal., 6 (2003), 25-72.

[32]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.

[33]

D. Sarason, Complex Function Theory, American Mathematical Society, second ed., 2007.

[34]

V. Sharafudtinov, Integral Geometry of Tensor Fields, VSP, Utrecht, The Netherlands, 1994. doi: 10.1515/9783110900095.

[35]

G. Uhlmann, Inside Out: Inverse Problems and Applications, Cambridge University Press, 2003. doi: 10.1090/conm/333.

[36]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

[37]

M. E. Taylor, Partial Differential Equations, vol. 115-117 of Applied Mathematical Sciences, Springer, 1996.

show all references

References:
[1]

L. Ahlfors, Complex Analysis, McGraw-Hill, 1978.

[2]

L. V. Ahlfors, Lectures on Quasiconformal Mappings, University Lecture Series, American Mathematical Society, 2006.

[3]

L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math, 72 (1960), 385-404.

[4]

E. Arbuzov, A. Bukhgeim and S. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Advances in Mathematics, 8 (1998), 1-20.

[5]

K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton University Press, 2009.

[6]

G. Bal, Ray transforms in hyperbolic geometry, J. Math. Pures Appl., 84 (2005), 1362-1392. doi: 10.1016/j.matpur.2005.02.001.

[7]

G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418. doi: 10.1088/0266-5611/20/2/006.

[8]

H. Begehr, Complex Analytic Methods for Partial Differential Equations, World Scientific Publishing Co., 1994.

[9]

C. Berenstein and E. C. Tarabush, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM J. Appl. Math., 56 (1996), 755-764. doi: 10.1137/S0036139994277348.

[10]

P. Colwell, Blaschke Products: Bounded Analytical Functions, University of Michigan Press, 1985.

[11]

L. Ehrenpreis, The Universality of the Radon Transform, Oxford Mathematical Monographs, Oxford University Press, USA, 2003. doi: 10.1093/acprof:oso/9780198509783.001.0001.

[12]

L. C. Evans, Partial Differential Equations, 19 of Graduate Studies in Mathematics, American Mathematical Society, 1998.

[13]

D. Finch, Uniqueness for the X-ray transform in the physical range, Inverse Problems, 2 (1986), 197-203. doi: 10.1088/0266-5611/2/2/010.

[14]

M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2003. doi: 10.1017/CBO9780511791246.

[15]

J. B. Garnett, Bounded Analytic Functions, Springer New York, 1981.

[16]

R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 40 of Graduate Studies in Mathematics, American Mathematical Society, 2006.

[17]

D. Griffiths, Introduction to Elementary Particles, Wiley-VCH, 2008. doi: 10.1002/9783527618460.

[18]

S. Helgason, The Radon Transform, 5 of Progress in Mathematics, Birkhäuser Boston, 1980.

[19]

______, Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators and Spherical Functions), American Mathematical Society, 2000.

[20]

______, The inversion of the x-ray transform on a compact symmetric space, Journal of Lie Theory, 17 (2007), 307-315.

[21]

L. Hormander, Complex Analysis in Several Variables, North Holland, 1990.

[22]

S. S. Romesh Kumar, Inner functions and substitution operators, Acta Sci. Math. (Szegal), 58 (1993), 509-516.

[23]

J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, 176 in Graduate Texts in Mathematics, Springer, 1997.

[24]

F. Natterer, Inversion of the attenuated radon transform, Inverse Problems, 17 (2001), 113-119. doi: 10.1088/0266-5611/17/1/309.

[25]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, (Monographs on Mathematical Modeling and Computation), Society for Industrial Mathematics, 2007. doi: 10.1118/1.1455744.

[26]

Z. Nehari, Conformal Mappings, McGraw-Hill Book Company, Inc., 1952.

[27]

R. Novikov, An inversion formula for the attenuated x-ray transformation, Ark. Math, 40 (2002), 145-167. doi: 10.1007/BF02384507.

[28]

L. Pestov and G. Uhlmann, On characterization of range and inversion formulas for the geodesic x-ray transform, International Math. Research Notices, 80 (2004), 4331-4347. doi: 10.1155/S1073792804142116.

[29]

H. Renelt, Elliptic Systems and Quasiconformal Mappings, John Wiley & Sons Inc, 1988.

[30]

V. Rubakov and S. S. Wilson, Classical Theory of Gauge Fields, Princeton University Press, 2002.

[31]

B. Rubin, Notes on radon transforms in integral geometry, Fract. Calc. Appl. Anal., 6 (2003), 25-72.

[32]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.

[33]

D. Sarason, Complex Function Theory, American Mathematical Society, second ed., 2007.

[34]

V. Sharafudtinov, Integral Geometry of Tensor Fields, VSP, Utrecht, The Netherlands, 1994. doi: 10.1515/9783110900095.

[35]

G. Uhlmann, Inside Out: Inverse Problems and Applications, Cambridge University Press, 2003. doi: 10.1090/conm/333.

[36]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

[37]

M. E. Taylor, Partial Differential Equations, vol. 115-117 of Applied Mathematical Sciences, Springer, 1996.

[1]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[2]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[3]

Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047

[4]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[5]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[6]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[7]

Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations and Control Theory, 2021, 10 (2) : 353-364. doi: 10.3934/eect.2020070

[8]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[9]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[10]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[11]

Jan Bouwe van den Berg, Gabriel William Duchesne, Jean-Philippe Lessard. Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach. Journal of Computational Dynamics, 2022, 9 (2) : 253-278. doi: 10.3934/jcd.2022005

[12]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[13]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic and Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[14]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[15]

Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789

[16]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[17]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

[18]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[19]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[20]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]