November  2014, 8(4): 1073-1116. doi: 10.3934/ipi.2014.8.1073

An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method

1. 

Laboratory of Mathematics, Institute of Engineering, Hiroshima University, Higashi Hiroshima 739-8527, Japan

2. 

Department of Mathematics, Graduate School of Sciences, Hiroshima University, Higashi Hiroshima 739-8526, Japan

Received  December 2013 Revised  October 2014 Published  November 2014

This paper studies a prototype of inverse initial boundary value problems whose governing equation is the heat equation in three dimensions. An unknown discontinuity embedded in a three-dimensional heat conductive body is considered. A single set of the temperature and heat flux on the lateral boundary for a fixed observation time is given as an observation datum. It is shown that this datum yields the minimum length of broken paths that start at a given point outside the body, go to a point on the boundary of the unknown discontinuity and return to a point on the boundary of the body under some conditions on the input heat flux, the unknown discontinuity and the body. This is new information obtained by using enclosure method.
Citation: Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073
References:
[1]

K. Bryan and F. L. Caudill, Jr., Uniqueness for a boundary identification problem in thermal imaging,, in Differential Equations and Computational Simulations III (eds. J. Graef, 01 (1998), 23.   Google Scholar

[2]

A. P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics (eds. W. H. Meyer and M. A. Raupp), (1980), 65.   Google Scholar

[3]

B. Canuto, E. Rosset and S. Vessella, Quantitative estimate of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries,, Trans. Amer. Math. Soc., 354 (2002), 491.  doi: 10.1090/S0002-9947-01-02860-4.  Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for sciences and technology, Evolution problems I,, Vol. 5, 5 (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[5]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data,, Inverse Problems, 15 (1999), 1231.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[6]

M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements,, J. Inv. Ill-Posed Problems, 8 (2000), 367.  doi: 10.1515/jiip.2000.8.4.367.  Google Scholar

[7]

M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case,, Applicable Analysis, 86 (2007), 963.  doi: 10.1080/00036810701460834.  Google Scholar

[8]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/5/055010.  Google Scholar

[9]

M. Ikehata, The framework of the enclosure method with dynamical data and its applications,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/6/065005.  Google Scholar

[10]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075005.  Google Scholar

[11]

M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095004.  Google Scholar

[12]

M. Ikehata and M. Kawashita, Estimates of the integral kernels arising from inverse problems for a three-dimensional heat equation in thermal imaging,, Kyoto J. Math., 54 (2014), 1.  doi: 10.1215/21562261-2400265.  Google Scholar

[13]

S. Mizohata, Theory of Partial Differential Equations,, Cambridge Univ. Press, (1973).   Google Scholar

[14]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[15]

S. Vessella, Stability estimates in an inverse problem for a three-dimensional heat equation,, SIAM J. Math. Anal., 28 (1997), 1354.  doi: 10.1137/S0036141095294262.  Google Scholar

[16]

S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates,, Topical Review, 24 (2008).  doi: 10.1088/0266-5611/24/2/023001.  Google Scholar

show all references

References:
[1]

K. Bryan and F. L. Caudill, Jr., Uniqueness for a boundary identification problem in thermal imaging,, in Differential Equations and Computational Simulations III (eds. J. Graef, 01 (1998), 23.   Google Scholar

[2]

A. P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics (eds. W. H. Meyer and M. A. Raupp), (1980), 65.   Google Scholar

[3]

B. Canuto, E. Rosset and S. Vessella, Quantitative estimate of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries,, Trans. Amer. Math. Soc., 354 (2002), 491.  doi: 10.1090/S0002-9947-01-02860-4.  Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for sciences and technology, Evolution problems I,, Vol. 5, 5 (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[5]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data,, Inverse Problems, 15 (1999), 1231.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[6]

M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements,, J. Inv. Ill-Posed Problems, 8 (2000), 367.  doi: 10.1515/jiip.2000.8.4.367.  Google Scholar

[7]

M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case,, Applicable Analysis, 86 (2007), 963.  doi: 10.1080/00036810701460834.  Google Scholar

[8]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/5/055010.  Google Scholar

[9]

M. Ikehata, The framework of the enclosure method with dynamical data and its applications,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/6/065005.  Google Scholar

[10]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075005.  Google Scholar

[11]

M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095004.  Google Scholar

[12]

M. Ikehata and M. Kawashita, Estimates of the integral kernels arising from inverse problems for a three-dimensional heat equation in thermal imaging,, Kyoto J. Math., 54 (2014), 1.  doi: 10.1215/21562261-2400265.  Google Scholar

[13]

S. Mizohata, Theory of Partial Differential Equations,, Cambridge Univ. Press, (1973).   Google Scholar

[14]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[15]

S. Vessella, Stability estimates in an inverse problem for a three-dimensional heat equation,, SIAM J. Math. Anal., 28 (1997), 1354.  doi: 10.1137/S0036141095294262.  Google Scholar

[16]

S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates,, Topical Review, 24 (2008).  doi: 10.1088/0266-5611/24/2/023001.  Google Scholar

[1]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[2]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[3]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[4]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[5]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[6]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[7]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[8]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[9]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[11]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[12]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[13]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[16]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[17]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[18]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[19]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[20]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]