• Previous Article
    Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map
  • IPI Home
  • This Issue
  • Next Article
    An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method
November  2014, 8(4): 1117-1137. doi: 10.3934/ipi.2014.8.1117

Calderón problem for Maxwell's equations in cylindrical domain

1. 

Department of Mathematics, Colorado State University,101 Weber Building, Fort Colins, CO 80523-1784, United States

2. 

Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro Tokyo 153-8914

Received  December 2013 Revised  September 2014 Published  November 2014

We prove some uniqueness results in determination of the conductivity, the permeability and the permittivity of Maxwell's equations in a cylindrical domain $\Omega \times (0,L)$ from partial boundary map. More specifically, for an arbitrarily given subboundary $\Gamma_0 \subset \partial\Omega$, we prove that the coefficients of Maxwell's equations can be uniquely determined in the subdomain $(\Omega \setminus$ [the convex hull of $\Gamma_0])$ $ \times (0,L)$ by the boundary map only for inputs vanishing on $\Gamma_0 \times (0,L)$.
Citation: Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117
References:
[1]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms,, Duke Math. J., 55 (1987), 943.  doi: 10.1215/S0012-7094-87-05547-5.  Google Scholar

[2]

A. P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65.   Google Scholar

[3]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. P.D.E., 34 (2009), 1425.  doi: 10.1080/03605300903296272.  Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, Springer-Verlag, (1990).   Google Scholar

[5]

S. Helgason, Integral Geometry and Radon Transforms,, Springer-Verlag, (2011).  doi: 10.1007/978-1-4419-6055-9.  Google Scholar

[6]

O. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions,, J. Amer. Math. Soc., 23 (2010), 655.  doi: 10.1090/S0894-0347-10-00656-9.  Google Scholar

[7]

O. Imanuvilov and M. Yamamoto, Inverse boundary value problem for the Schrödinger equation in cylindrical domain by partial boundary data,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/4/045002.  Google Scholar

[8]

O. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries,, Milan J. Math., 81 (2013), 187.  doi: 10.1007/s00032-013-0205-3.  Google Scholar

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95.  doi: 10.3934/ipi.2007.1.95.  Google Scholar

[10]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications,, Mathematical Subject Classification, 6 (2013), 2003.  doi: 10.2140/apde.2013.6.2003.  Google Scholar

[11]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar

[12]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics,, Duke . Math. J., 70 (1993), 617.  doi: 10.1215/S0012-7094-93-07014-7.  Google Scholar

[13]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

show all references

References:
[1]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms,, Duke Math. J., 55 (1987), 943.  doi: 10.1215/S0012-7094-87-05547-5.  Google Scholar

[2]

A. P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65.   Google Scholar

[3]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. P.D.E., 34 (2009), 1425.  doi: 10.1080/03605300903296272.  Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, Springer-Verlag, (1990).   Google Scholar

[5]

S. Helgason, Integral Geometry and Radon Transforms,, Springer-Verlag, (2011).  doi: 10.1007/978-1-4419-6055-9.  Google Scholar

[6]

O. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions,, J. Amer. Math. Soc., 23 (2010), 655.  doi: 10.1090/S0894-0347-10-00656-9.  Google Scholar

[7]

O. Imanuvilov and M. Yamamoto, Inverse boundary value problem for the Schrödinger equation in cylindrical domain by partial boundary data,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/4/045002.  Google Scholar

[8]

O. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries,, Milan J. Math., 81 (2013), 187.  doi: 10.1007/s00032-013-0205-3.  Google Scholar

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95.  doi: 10.3934/ipi.2007.1.95.  Google Scholar

[10]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications,, Mathematical Subject Classification, 6 (2013), 2003.  doi: 10.2140/apde.2013.6.2003.  Google Scholar

[11]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar

[12]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics,, Duke . Math. J., 70 (1993), 617.  doi: 10.1215/S0012-7094-93-07014-7.  Google Scholar

[13]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[13]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[14]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[15]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[16]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]