• Previous Article
    An inverse problem for the magnetic Schrödinger operator on a half space with partial data
  • IPI Home
  • This Issue
  • Next Article
    Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map
November  2014, 8(4): 1151-1167. doi: 10.3934/ipi.2014.8.1151

The nonlinear Fourier transform for two-dimensional subcritical potentials

1. 

Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, United States

Received  November 2013 Revised  June 2014 Published  November 2014

The inverse scattering method for the Novikov-Veselov equation is studied for a larger class of Schrödinger potentials than could be handled previously. Previous work concerns so-called conductivity type potentials, which have a bounded positive solution at zero energy and are a nowhere dense set of potentials. We relax the conductivity type assumption to include logarithmically growing positive solutions at zero energy. These potentials are stable under perturbations. Assuming only that the potential is subcritical and has two weak derivatives in a weighted Sobolev space, we prove that the associated scattering transform can be inverted, and the original potential is recovered from the scattering data.
Citation: Michael Music. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Problems and Imaging, 2014, 8 (4) : 1151-1167. doi: 10.3934/ipi.2014.8.1151
References:
[1]

K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasi-Conformal Mappings in the Plane, volume 48 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2009.

[2]

R. Beals and R. R. Coifman, Linear spectral problems, nonlinear equations and the $\overline\partial$-method, Inverse Problems, 5 (1989), 87-130. doi: 10.1088/0266-5611/5/2/002.

[3]

M. Boiti, J. Leon, M. Manna and F. Pempinelli, On a spectral transform of a Korteweg-de Vries equation in two spatial dimensions, Inverse Problems, 2 (1986), 271-279. doi: 10.1088/0266-5611/3/1/008.

[4]

R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Communications in Partial Differential Equations, 22 (1997), 1009-1027. doi: 10.1080/03605309708821292.

[5]

R. Croke, J. Mueller, M. Music, P. Perry, S. Siltanen and A. Stahel, The Novikov-Veselov Equation: Theory and Computation,, , (). 

[6]

L. D. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 11 (1966), 209-211.

[7]

P. G. Grinevich and R. G. Novikov, Faddeev eigenfunctions for point potentials in two dimensions, Phys. Lett. A, 376 (2012), 1102-1106. doi: 10.1016/j.physleta.2012.02.025.

[8]

M. Lassas, J. L. Mueller and S. Siltanen, Mapping properties of the nonlinear Fourier transform in dimension two, Communications in Partial Differential Equations, 32 (2007), 591-610. doi: 10.1080/03605300500530412.

[9]

M. Lassas, J. L. Mueller, S. Siltanen and A. Stahel, The Novikov-Veselov equation and the inverse scattering method, Part I: Analysis, Physica D: Nonlinear Phenomena, 241 (2012), 1322-1335. doi: 10.1016/j.physd.2012.04.010.

[10]

M. Murata, Structure of positive solutions to $(-\Delta+V)u=0$ in $R^n$, Duke Math. J., 53 (1986), 869-943. doi: 10.1215/S0012-7094-86-05347-0.

[11]

M. Music, P. Perry and S. Siltanen, Exceptional circles of radial potentials, Inverse Problems, 29 (2013), 045004, 25pp. doi: 10.1088/0266-5611/29/4/045004.

[12]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2), 143 (1996), 71-96; University of Rochester, Dept. of Mathematics Preprint Series, 19, 1993. doi: 10.2307/2118653.

[13]

P. Perry, Miura maps and inverse scattering for the Novikov-Veselov equation, Analysis and Partial Differential Equations, 7 (2014), 311-343. doi: 10.2140/apde.2014.7.311.

[14]

S. Siltanen, Electrical impedance tomography and Faddeev's Green functions, Ann. Acad. Sci. Fenn. Mathematica Dissertationes, 121, (1999), 56pp.

[15]

T.-Y. Tsai, The associated evolution equations of the Schödinger operator in the plane, Inverse Problems, 10 (1994), 1419-1432. doi: 10.1088/0266-5611/10/6/015.

[16]

T.-Y. Tsai, The Schrödinger operator in the plane, Inverse Problems, 9 (1993), 763-787. doi: 10.1088/0266-5611/9/6/012.

show all references

References:
[1]

K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasi-Conformal Mappings in the Plane, volume 48 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2009.

[2]

R. Beals and R. R. Coifman, Linear spectral problems, nonlinear equations and the $\overline\partial$-method, Inverse Problems, 5 (1989), 87-130. doi: 10.1088/0266-5611/5/2/002.

[3]

M. Boiti, J. Leon, M. Manna and F. Pempinelli, On a spectral transform of a Korteweg-de Vries equation in two spatial dimensions, Inverse Problems, 2 (1986), 271-279. doi: 10.1088/0266-5611/3/1/008.

[4]

R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Communications in Partial Differential Equations, 22 (1997), 1009-1027. doi: 10.1080/03605309708821292.

[5]

R. Croke, J. Mueller, M. Music, P. Perry, S. Siltanen and A. Stahel, The Novikov-Veselov Equation: Theory and Computation,, , (). 

[6]

L. D. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 11 (1966), 209-211.

[7]

P. G. Grinevich and R. G. Novikov, Faddeev eigenfunctions for point potentials in two dimensions, Phys. Lett. A, 376 (2012), 1102-1106. doi: 10.1016/j.physleta.2012.02.025.

[8]

M. Lassas, J. L. Mueller and S. Siltanen, Mapping properties of the nonlinear Fourier transform in dimension two, Communications in Partial Differential Equations, 32 (2007), 591-610. doi: 10.1080/03605300500530412.

[9]

M. Lassas, J. L. Mueller, S. Siltanen and A. Stahel, The Novikov-Veselov equation and the inverse scattering method, Part I: Analysis, Physica D: Nonlinear Phenomena, 241 (2012), 1322-1335. doi: 10.1016/j.physd.2012.04.010.

[10]

M. Murata, Structure of positive solutions to $(-\Delta+V)u=0$ in $R^n$, Duke Math. J., 53 (1986), 869-943. doi: 10.1215/S0012-7094-86-05347-0.

[11]

M. Music, P. Perry and S. Siltanen, Exceptional circles of radial potentials, Inverse Problems, 29 (2013), 045004, 25pp. doi: 10.1088/0266-5611/29/4/045004.

[12]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2), 143 (1996), 71-96; University of Rochester, Dept. of Mathematics Preprint Series, 19, 1993. doi: 10.2307/2118653.

[13]

P. Perry, Miura maps and inverse scattering for the Novikov-Veselov equation, Analysis and Partial Differential Equations, 7 (2014), 311-343. doi: 10.2140/apde.2014.7.311.

[14]

S. Siltanen, Electrical impedance tomography and Faddeev's Green functions, Ann. Acad. Sci. Fenn. Mathematica Dissertationes, 121, (1999), 56pp.

[15]

T.-Y. Tsai, The associated evolution equations of the Schödinger operator in the plane, Inverse Problems, 10 (1994), 1419-1432. doi: 10.1088/0266-5611/10/6/015.

[16]

T.-Y. Tsai, The Schrödinger operator in the plane, Inverse Problems, 9 (1993), 763-787. doi: 10.1088/0266-5611/9/6/012.

[1]

Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure and Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727

[2]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems and Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[3]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290

[4]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[5]

José Manuel Palacios. Orbital and asymptotic stability of a train of peakons for the Novikov equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2475-2518. doi: 10.3934/dcds.2020372

[6]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[7]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems and Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[8]

Wei-Kang Xun, Shou-Fu Tian, Tian-Tian Zhang. Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021259

[9]

Yuan Li, Shou-Fu Tian. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure and Applied Analysis, 2022, 21 (1) : 293-313. doi: 10.3934/cpaa.2021178

[10]

Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771

[11]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

[12]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic and Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

[13]

Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[16]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[17]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[18]

Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489

[19]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[20]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]