November  2014, 8(4): 1169-1189. doi: 10.3934/ipi.2014.8.1169

An inverse problem for the magnetic Schrödinger operator on a half space with partial data

1. 

Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68 (Gustaf Hallstromin katu 2b) FI-00014, Finland

Received  April 2013 Revised  November 2013 Published  November 2014

In this paper we prove uniqueness for an inverse boundary value problem for the magnetic Schrödinger equation in a half space, with partial data. We prove that the curl of the magnetic potential $A$, when $A\in W_{comp}^{1,\infty}(\overline{\mathbb{R}_{-}^3},\mathbb{R}^3)$, and the electric pontetial $q \in L_{comp}^{\infty}(\overline{\mathbb{R}_{-}^3},\mathbb{C})$ are uniquely determined by the knowledge of the Dirichlet-to-Neumann map on parts of the boundary of the half space.
Citation: Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169
References:
[1]

S. Arridge, Optical tomography in medical imaging,, Inverse Problems, 15 (1999).  doi: 10.1088/0266-5611/15/2/022.  Google Scholar

[2]

M. Cheney and D. Isaacson, Inverse problems for a perturbed dissipative half-space,, Inverse Problems, 11 (1995), 865.  doi: 10.1088/0266-5611/11/4/015.  Google Scholar

[3]

M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques,, Springer-Verlag, (2009).  doi: 10.1007/978-3-642-02460-3.  Google Scholar

[4]

F. J. Chung, A partial data result for the magnetic Schrödinger inverse problem,, Anal. PDE, 7 (2014), 117.  doi: 10.2140/apde.2014.7.117.  Google Scholar

[5]

D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand and G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data,, Communications in Mathematical Physics, 271 (2007), 467.  doi: 10.1007/s00220-006-0151-9.  Google Scholar

[6]

G. Eskin and J. Ralston, Inverse scattering problem for the Schrödinger equation with magentic potential at a fixed energy,, Communications in Mathematicala Physics, 173 (1995), 199.  doi: 10.1007/BF02100187.  Google Scholar

[7]

L. Hörmander, An Introduction to Complex Analysis in Several Variables,, North-Holland, (1990).   Google Scholar

[8]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95.  doi: 10.3934/ipi.2007.1.95.  Google Scholar

[9]

K. Knudsen and M. Salo, Determining nonsmooth first order terms from partial boundary measurements,, Inverse Problems and Imaging, 1 (2007), 349.  doi: 10.3934/ipi.2007.1.349.  Google Scholar

[10]

R. Kress, Linear Integral Equations,, Springer, (1989).  doi: 10.1007/978-3-642-97146-4.  Google Scholar

[11]

K. Krupchyk, M. Lassas and G. Uhlmann, Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain,, Communications in Mathematical Physics, 312 (2012), 87.  doi: 10.1007/s00220-012-1431-1.  Google Scholar

[12]

K. Krupchyk and G. Uhlmann, Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential,, Comm. Math. Phys., 327 (2014), 993.  doi: 10.1007/s00220-014-1942-z.  Google Scholar

[13]

M. Lassas, M. Cheney and G. Uhlmann, Uniqueness for a wave propagation inverse problem in a half-space,, Inverse Problems, 14 (1998), 679.  doi: 10.1088/0266-5611/14/3/017.  Google Scholar

[14]

R. Leis, Initial Boundary Values Problems in Mathematical Physics,, John Wiley and Sons Ltd., (1986).  doi: 10.1007/978-3-663-10649-4.  Google Scholar

[15]

X. Li, Inverse boundary value problems with partial data in unbounded domains,, Inverse Problems, 28 (2012), 1.  doi: 10.1088/0266-5611/28/8/085003.  Google Scholar

[16]

X. Li and G. Uhlmann, Inverse problems with partial data in a slab,, Inverse Problems and Imaging, 4 (2010), 449.  doi: 10.3934/ipi.2010.4.449.  Google Scholar

[17]

G. Nakamura, Z. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field,, Mathematische Annalen, 303 (1995), 377.  doi: 10.1007/BF01460996.  Google Scholar

[18]

A. Panchenko, An inverse problem for the magnetic schrödinger equation and quasi-exponential solutions of nonsmooth partial differential equations,, Inverse Problems, 18 (2002), 1421.  doi: 10.1088/0266-5611/18/5/314.  Google Scholar

[19]

V. Pohjola, An Inverse Boundary Value Problem for the Magnetic Schrödinger Operator on a Half Space,, preprint, (2012).   Google Scholar

[20]

M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian,, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004).   Google Scholar

[21]

M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field,, Communications in Partial Differential Equations, 31 (2006), 1639.  doi: 10.1080/03605300500530420.  Google Scholar

[22]

Z. Sun, An inverse boundary problem for Schrödinger operators with vector potentials,, Trans. Amer. Math.Soc., 338 (1993), 953.  doi: 10.2307/2154438.  Google Scholar

[23]

C. Tolmasky, Exponentially growing solutions for nonsmooth first-order perturbations of the laplacian,, SIAM J. Math. Anal., 29 (1998), 116.  doi: 10.1137/S0036141096301038.  Google Scholar

[24]

G. Uhlmann, electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

show all references

References:
[1]

S. Arridge, Optical tomography in medical imaging,, Inverse Problems, 15 (1999).  doi: 10.1088/0266-5611/15/2/022.  Google Scholar

[2]

M. Cheney and D. Isaacson, Inverse problems for a perturbed dissipative half-space,, Inverse Problems, 11 (1995), 865.  doi: 10.1088/0266-5611/11/4/015.  Google Scholar

[3]

M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques,, Springer-Verlag, (2009).  doi: 10.1007/978-3-642-02460-3.  Google Scholar

[4]

F. J. Chung, A partial data result for the magnetic Schrödinger inverse problem,, Anal. PDE, 7 (2014), 117.  doi: 10.2140/apde.2014.7.117.  Google Scholar

[5]

D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand and G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data,, Communications in Mathematical Physics, 271 (2007), 467.  doi: 10.1007/s00220-006-0151-9.  Google Scholar

[6]

G. Eskin and J. Ralston, Inverse scattering problem for the Schrödinger equation with magentic potential at a fixed energy,, Communications in Mathematicala Physics, 173 (1995), 199.  doi: 10.1007/BF02100187.  Google Scholar

[7]

L. Hörmander, An Introduction to Complex Analysis in Several Variables,, North-Holland, (1990).   Google Scholar

[8]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95.  doi: 10.3934/ipi.2007.1.95.  Google Scholar

[9]

K. Knudsen and M. Salo, Determining nonsmooth first order terms from partial boundary measurements,, Inverse Problems and Imaging, 1 (2007), 349.  doi: 10.3934/ipi.2007.1.349.  Google Scholar

[10]

R. Kress, Linear Integral Equations,, Springer, (1989).  doi: 10.1007/978-3-642-97146-4.  Google Scholar

[11]

K. Krupchyk, M. Lassas and G. Uhlmann, Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain,, Communications in Mathematical Physics, 312 (2012), 87.  doi: 10.1007/s00220-012-1431-1.  Google Scholar

[12]

K. Krupchyk and G. Uhlmann, Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential,, Comm. Math. Phys., 327 (2014), 993.  doi: 10.1007/s00220-014-1942-z.  Google Scholar

[13]

M. Lassas, M. Cheney and G. Uhlmann, Uniqueness for a wave propagation inverse problem in a half-space,, Inverse Problems, 14 (1998), 679.  doi: 10.1088/0266-5611/14/3/017.  Google Scholar

[14]

R. Leis, Initial Boundary Values Problems in Mathematical Physics,, John Wiley and Sons Ltd., (1986).  doi: 10.1007/978-3-663-10649-4.  Google Scholar

[15]

X. Li, Inverse boundary value problems with partial data in unbounded domains,, Inverse Problems, 28 (2012), 1.  doi: 10.1088/0266-5611/28/8/085003.  Google Scholar

[16]

X. Li and G. Uhlmann, Inverse problems with partial data in a slab,, Inverse Problems and Imaging, 4 (2010), 449.  doi: 10.3934/ipi.2010.4.449.  Google Scholar

[17]

G. Nakamura, Z. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field,, Mathematische Annalen, 303 (1995), 377.  doi: 10.1007/BF01460996.  Google Scholar

[18]

A. Panchenko, An inverse problem for the magnetic schrödinger equation and quasi-exponential solutions of nonsmooth partial differential equations,, Inverse Problems, 18 (2002), 1421.  doi: 10.1088/0266-5611/18/5/314.  Google Scholar

[19]

V. Pohjola, An Inverse Boundary Value Problem for the Magnetic Schrödinger Operator on a Half Space,, preprint, (2012).   Google Scholar

[20]

M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian,, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004).   Google Scholar

[21]

M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field,, Communications in Partial Differential Equations, 31 (2006), 1639.  doi: 10.1080/03605300500530420.  Google Scholar

[22]

Z. Sun, An inverse boundary problem for Schrödinger operators with vector potentials,, Trans. Amer. Math.Soc., 338 (1993), 953.  doi: 10.2307/2154438.  Google Scholar

[23]

C. Tolmasky, Exponentially growing solutions for nonsmooth first-order perturbations of the laplacian,, SIAM J. Math. Anal., 29 (1998), 116.  doi: 10.1137/S0036141096301038.  Google Scholar

[24]

G. Uhlmann, electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

[1]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[2]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[3]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[4]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[5]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[6]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[7]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[8]

Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933

[9]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[10]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[11]

Ran Zhuo, Fengquan Li, Boqiang Lv. Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space. Communications on Pure & Applied Analysis, 2014, 13 (3) : 977-990. doi: 10.3934/cpaa.2014.13.977

[12]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[13]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems & Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[14]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[15]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[16]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control & Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[17]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[18]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004

[19]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[20]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]