# American Institute of Mathematical Sciences

February  2014, 8(1): 127-148. doi: 10.3934/ipi.2014.8.127

## Adaptive meshing approach to identification of cracks with electrical impedance tomography

 1 Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland, Finland 2 Department of Mathematics, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand

Received  March 2013 Revised  September 2013 Published  March 2014

Electrical impedance tomography (EIT) is a non-invasive imaging modality in which the internal conductivity distribution is reconstructed based on boundary voltage measurements. In this work, we consider the application of EIT to non-destructive testing (NDT) of materials and, especially, crack detection. The main goal is to estimate the location, depth and orientation of a crack in three dimensions. We formulate the crack detection task as a shape estimation problem for boundaries imposed with Neumann zero boundary conditions. We propose an adaptive meshing algorithm that iteratively seeks the maximum a posteriori estimate for the shape of the crack. The approach is tested both numerically and experimentally. In all test cases, the EIT measurements are collected using a set of electrodes attached on only a single planar surface of the target -- this is often the only realizable configuration in NDT of large building structures, such as concrete walls. The results show that with the proposed computational method, it is possible to recover the position and size of the crack, even in cases where the background conductivity is inhomogeneous.
Citation: Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems and Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127
##### References:
 [1] G. Alessandrini and E. Di Benedetto, Determining 2-dimensional cracks in 3-dimensional bodies: Uniqueness and stability, Indiana Univ. Math. J., 46 (1997), 1-82. [2] G. Alessandrini and L. Rondi, Stable determination of a crack in a planar inhomogeneous conductor, SIAM Journal on Mathematical Analysis, 30 (1998), 326-340. doi: 10.1137/S0036141097325502. [3] D. Álvarez, O. Dorn, N. Irishina and M. Moscoso, Crack reconstruction using a level-set strategy, Journal of Computational Physics, 228 (2009), 5710-5721. doi: 10.1016/j.jcp.2009.04.038. [4] K. E. Andersen, S. P. Brooks and M. B. Hansen., A Bayesian approach to crack detection in electrically conducting media, Inverse Problems, 17 (2001), 121-136. doi: 10.1088/0266-5611/17/1/310. [5] S. Andrieux, A. B. Abda and H. D. Bui., Reciprocity principle and crack identification, Inverse Problems, 15 (1999), 59-65. doi: 10.1088/0266-5611/15/1/010. [6] T. Bannour, A. B. Abda and M. Jaoua, A semi-explicit algorithm for the reconstruction of 3D planar cracks, Inverse Problems, 13 (1997), 899-917. doi: 10.1088/0266-5611/13/4/002. [7] Z. B. Bazant and J. Planas, Fracture and Size Effect in Concrete and Other Quasibrittle Materials (New Directions in Civil Engineering), CRC Press, 1997. [8] L. R. Bentley and M. Gharibi, Two-and three-dimensional electrical resistivity imaging at a heterogeneous remediation site, Geophysics, 69 (2004), 674-680. doi: 10.1190/1.1759453. [9] M. Brühl, M. Hanke and M. Pidcock, Crack detection using electrostatic measurements, Mathematical Modelling and Numerical Analysis, 35 (2001), 595-605. doi: 10.1051/m2an:2001128. [10] K. Bryan and M. Vogelius, Reconstruction of multiple cracks from experimental electrostatic boundary measurements, Inverse Problems and Optimal Design in Industry, 7 (1993), 147-167. [11] K. Bryan and M. S. Vogelius, A review of selected works on crack identification, Geometric Methods in Inverse Problems and PDE Control, 137 (2004), 25-46. doi: 10.1007/978-1-4684-9375-7_3. [12] M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101. doi: 10.1137/S0036144598333613. [13] K. S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924. [14] P. Church, J. E. McFee, S. Gagnon and P. Wort, Electrical impedance tomographic imaging of buried landmines, IEEE Transactions on Geoscience and Remote Sensing, 44 (2006), 2407-2420. doi: 10.1109/TGRS.2006.873208. [15] W. Daily, A. Ramirez, A. Binley and D. LeBrecque, Electrical resistance tomography, The Leading Edge, 23 (2004), 438. doi: 10.1190/1.1729225. [16] J. Dardé, N. Hyvönen, A. Seppänen and S. Staboulis, Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography, SIAM Journal on Imaging Sciences, 6 (2013), 176-198. doi: 10.1137/120877301. [17] A. R. Elcrat and C. Hu, Determination of surface and interior cracks from electrostatic measurements using Schwarz-Christoffel transformations, International Journal of Engineering Science, 34 (1996), 1165-1181. doi: 10.1016/0020-7225(96)00011-0. [18] I. Frerichs, G. Hahn and G. Hellige, Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure, IEEE Trans. Med. Imaging, 18 (1999), 764-773. doi: 10.1109/42.802754. [19] A. Friedman and M. Vogelius, Determining cracks by boundary measurements, Indiana Univ. Math. J., 38 (1989), 527-556. doi: 10.1512/iumj.1989.38.38025. [20] F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems, 14 (1998), 67-82. doi: 10.1088/0266-5611/14/1/008. [21] T. C. Hou and J. P. Lynch, Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures, Journal of Intelligent Material Systems and Structures, (2008). doi: 10.1177/1045389X08096052. [22] N. Hyvönen, K. Karhunen and A. Seppänen, Fréchet derivative with respect to the shape of an internal electrode in Electrical Impedance Tomography, SIAM Journal on Applied Mathematics, 70 (2010), 1878. doi: 10.1137/09075929X. [23] S. Järvenpää, Finite Element Model for the Inverse Conductivity Problem, Phil. Lic. thesis, University of Helsinki, Finland, 1996. [24] J. P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in EIT, Inverse Problems, 16 (2000), 1487-1522. doi: 10.1088/0266-5611/16/5/321. [25] J. P. Kaipio, V. Kolehmainen, M. Vauhkonen and E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15 (1999), 713-729. doi: 10.1088/0266-5611/15/3/306. [26] J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer Science+ Business Media, Inc., 2005. [27] K. Karhunen, A. Seppänen, A. Lehikoinen, J. Blunt, J. P. Kaipio and P. J. M. Monteiro, Electrical resistance tomography for assessment of cracks in concrete. ACI Materials Journal, 107 (2010), 523. [28] K. Karhunen, A. Seppänen, A. Lehikoinen, P. J. M. Monteiro and J. P. Kaipio, Electrical resistance tomography imaging of concrete, Cement and Concrete Research, 40 (2010), 137-145. doi: 10.1016/j.cemconres.2009.08.023. [29] H. Kim and J. K. Seo, Unique determination of a collection of a finite number of cracks from two boundary measurements, SIAM Journal on Mathematical Analysis, 27 (1996), 1336-1340. doi: 10.1137/S0036141094275488. [30] V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen and J. P. Kaipio, Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data, Inverse Problems, 15 (1999), 1375-1391. doi: 10.1088/0266-5611/15/5/318. [31] J. Kourunen, T. Savolainen, A. Lehikoinen, M. Vauhkonen and L. M. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2009), 015503. doi: 10.1088/0957-0233/20/1/015503. [32] P. W. A. Kunst, A. V. Noordegraaf, O. S. Hoekstra, P. E. Postmus and P. De Vries, Ventilation and perfusion imaging by electrical impedance tomography: A comparison with radionuclide scanning, Physiological Measurement, 19 (1998), 481-490. doi: 10.1088/0967-3334/19/4/003. [33] J. F. Lataste, C. Sirieix, D. Breysse and M. Frappa, Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering, NDT and E International, 36 (2003), 383-394. doi: 10.1016/S0963-8695(03)00013-6. [34] C. Lieberman, K. Willcox and O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM Journal on Scientific Computing, 32 (2010), 2523-2542. doi: 10.1137/090775622. [35] V. Liepa, F. Santosa and M. Vogelius, Crack determination from boundary measurements-reconstruction using experimental data, Journal of Nondestructive Evaluation, 12 (1993), 163-174. doi: 10.1007/BF00567084. [36] K. J. Loh, T-C Hou, J. P. Lynch and N. A Kotov, Carbon nanotube sensing skins for spatial strain and impact damage identification, Journal of Nondestructuctive Evaluation, 28 (2009), 9-25. doi: 10.1007/s10921-009-0043-y. [37] P. R. McGillivray and D. W. Oldenburg, Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problem: A comparative study, Geophysical Prospecting, 38 (1990), 499-524. [38] K. S. Osterman, T. E. Kerner, D. B. Williams, A. Hartov, S. P. Poplack and K. D. Paulsen, Multifrequency electrical impedance imaging: Preliminary in vivo experience in breast, Physiological Measurement, 21 (2000), 99-109. [39] R. B. Polder, Test methods for on site measurement of resistivity of concrete-a RILEM TC-154 technical recommendation, Construction and building materials, 15 (2001), 125-131. doi: 10.1016/S0950-0618(00)00061-1. [40] F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electrostatic boundary measurements, International Journal of Engineering Science, 29 (1991), 917-937. doi: 10.1016/0020-7225(91)90166-Z. [41] J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Computing and Visualization in Science, 1 (1997), 41-52. [42] E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040. doi: 10.1137/0152060. [43] O.-P. Tossavainen, V. Kolehmainen and M. Vauhkonen, Free-surface and admittivity estimation in electrical impedance tomography, International Journal for Numerical Methods in Engineering, 66 (2006), 1991-2013. doi: 10.1002/nme.1603. [44] O.-P. Tossavainen, M. Vauhkonen, L. M. Heikkinen and T. Savolainen, Estimating shapes and free surfaces with EIT, Measurement Science and Technology, 15 (2004), 1402-1411. [45] P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on thecomplete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160. [46] T. Vilhunen, J. P. Kaipio, P. J. Vauhkonen, T. Savolainen and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory, Measurement Science and Technology, 13 (2002), 1848-1854. doi: 10.1088/0957-0233/13/12/307. [47] R. A. Williams and M. S. Beck, Process Tomography: Principles, Techniques, and Applications, Butterworth-Heinemann, 1995.

show all references

##### References:
 [1] G. Alessandrini and E. Di Benedetto, Determining 2-dimensional cracks in 3-dimensional bodies: Uniqueness and stability, Indiana Univ. Math. J., 46 (1997), 1-82. [2] G. Alessandrini and L. Rondi, Stable determination of a crack in a planar inhomogeneous conductor, SIAM Journal on Mathematical Analysis, 30 (1998), 326-340. doi: 10.1137/S0036141097325502. [3] D. Álvarez, O. Dorn, N. Irishina and M. Moscoso, Crack reconstruction using a level-set strategy, Journal of Computational Physics, 228 (2009), 5710-5721. doi: 10.1016/j.jcp.2009.04.038. [4] K. E. Andersen, S. P. Brooks and M. B. Hansen., A Bayesian approach to crack detection in electrically conducting media, Inverse Problems, 17 (2001), 121-136. doi: 10.1088/0266-5611/17/1/310. [5] S. Andrieux, A. B. Abda and H. D. Bui., Reciprocity principle and crack identification, Inverse Problems, 15 (1999), 59-65. doi: 10.1088/0266-5611/15/1/010. [6] T. Bannour, A. B. Abda and M. Jaoua, A semi-explicit algorithm for the reconstruction of 3D planar cracks, Inverse Problems, 13 (1997), 899-917. doi: 10.1088/0266-5611/13/4/002. [7] Z. B. Bazant and J. Planas, Fracture and Size Effect in Concrete and Other Quasibrittle Materials (New Directions in Civil Engineering), CRC Press, 1997. [8] L. R. Bentley and M. Gharibi, Two-and three-dimensional electrical resistivity imaging at a heterogeneous remediation site, Geophysics, 69 (2004), 674-680. doi: 10.1190/1.1759453. [9] M. Brühl, M. Hanke and M. Pidcock, Crack detection using electrostatic measurements, Mathematical Modelling and Numerical Analysis, 35 (2001), 595-605. doi: 10.1051/m2an:2001128. [10] K. Bryan and M. Vogelius, Reconstruction of multiple cracks from experimental electrostatic boundary measurements, Inverse Problems and Optimal Design in Industry, 7 (1993), 147-167. [11] K. Bryan and M. S. Vogelius, A review of selected works on crack identification, Geometric Methods in Inverse Problems and PDE Control, 137 (2004), 25-46. doi: 10.1007/978-1-4684-9375-7_3. [12] M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101. doi: 10.1137/S0036144598333613. [13] K. S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924. [14] P. Church, J. E. McFee, S. Gagnon and P. Wort, Electrical impedance tomographic imaging of buried landmines, IEEE Transactions on Geoscience and Remote Sensing, 44 (2006), 2407-2420. doi: 10.1109/TGRS.2006.873208. [15] W. Daily, A. Ramirez, A. Binley and D. LeBrecque, Electrical resistance tomography, The Leading Edge, 23 (2004), 438. doi: 10.1190/1.1729225. [16] J. Dardé, N. Hyvönen, A. Seppänen and S. Staboulis, Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography, SIAM Journal on Imaging Sciences, 6 (2013), 176-198. doi: 10.1137/120877301. [17] A. R. Elcrat and C. Hu, Determination of surface and interior cracks from electrostatic measurements using Schwarz-Christoffel transformations, International Journal of Engineering Science, 34 (1996), 1165-1181. doi: 10.1016/0020-7225(96)00011-0. [18] I. Frerichs, G. Hahn and G. Hellige, Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure, IEEE Trans. Med. Imaging, 18 (1999), 764-773. doi: 10.1109/42.802754. [19] A. Friedman and M. Vogelius, Determining cracks by boundary measurements, Indiana Univ. Math. J., 38 (1989), 527-556. doi: 10.1512/iumj.1989.38.38025. [20] F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems, 14 (1998), 67-82. doi: 10.1088/0266-5611/14/1/008. [21] T. C. Hou and J. P. Lynch, Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures, Journal of Intelligent Material Systems and Structures, (2008). doi: 10.1177/1045389X08096052. [22] N. Hyvönen, K. Karhunen and A. Seppänen, Fréchet derivative with respect to the shape of an internal electrode in Electrical Impedance Tomography, SIAM Journal on Applied Mathematics, 70 (2010), 1878. doi: 10.1137/09075929X. [23] S. Järvenpää, Finite Element Model for the Inverse Conductivity Problem, Phil. Lic. thesis, University of Helsinki, Finland, 1996. [24] J. P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in EIT, Inverse Problems, 16 (2000), 1487-1522. doi: 10.1088/0266-5611/16/5/321. [25] J. P. Kaipio, V. Kolehmainen, M. Vauhkonen and E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15 (1999), 713-729. doi: 10.1088/0266-5611/15/3/306. [26] J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer Science+ Business Media, Inc., 2005. [27] K. Karhunen, A. Seppänen, A. Lehikoinen, J. Blunt, J. P. Kaipio and P. J. M. Monteiro, Electrical resistance tomography for assessment of cracks in concrete. ACI Materials Journal, 107 (2010), 523. [28] K. Karhunen, A. Seppänen, A. Lehikoinen, P. J. M. Monteiro and J. P. Kaipio, Electrical resistance tomography imaging of concrete, Cement and Concrete Research, 40 (2010), 137-145. doi: 10.1016/j.cemconres.2009.08.023. [29] H. Kim and J. K. Seo, Unique determination of a collection of a finite number of cracks from two boundary measurements, SIAM Journal on Mathematical Analysis, 27 (1996), 1336-1340. doi: 10.1137/S0036141094275488. [30] V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen and J. P. Kaipio, Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data, Inverse Problems, 15 (1999), 1375-1391. doi: 10.1088/0266-5611/15/5/318. [31] J. Kourunen, T. Savolainen, A. Lehikoinen, M. Vauhkonen and L. M. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2009), 015503. doi: 10.1088/0957-0233/20/1/015503. [32] P. W. A. Kunst, A. V. Noordegraaf, O. S. Hoekstra, P. E. Postmus and P. De Vries, Ventilation and perfusion imaging by electrical impedance tomography: A comparison with radionuclide scanning, Physiological Measurement, 19 (1998), 481-490. doi: 10.1088/0967-3334/19/4/003. [33] J. F. Lataste, C. Sirieix, D. Breysse and M. Frappa, Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering, NDT and E International, 36 (2003), 383-394. doi: 10.1016/S0963-8695(03)00013-6. [34] C. Lieberman, K. Willcox and O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM Journal on Scientific Computing, 32 (2010), 2523-2542. doi: 10.1137/090775622. [35] V. Liepa, F. Santosa and M. Vogelius, Crack determination from boundary measurements-reconstruction using experimental data, Journal of Nondestructive Evaluation, 12 (1993), 163-174. doi: 10.1007/BF00567084. [36] K. J. Loh, T-C Hou, J. P. Lynch and N. A Kotov, Carbon nanotube sensing skins for spatial strain and impact damage identification, Journal of Nondestructuctive Evaluation, 28 (2009), 9-25. doi: 10.1007/s10921-009-0043-y. [37] P. R. McGillivray and D. W. Oldenburg, Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problem: A comparative study, Geophysical Prospecting, 38 (1990), 499-524. [38] K. S. Osterman, T. E. Kerner, D. B. Williams, A. Hartov, S. P. Poplack and K. D. Paulsen, Multifrequency electrical impedance imaging: Preliminary in vivo experience in breast, Physiological Measurement, 21 (2000), 99-109. [39] R. B. Polder, Test methods for on site measurement of resistivity of concrete-a RILEM TC-154 technical recommendation, Construction and building materials, 15 (2001), 125-131. doi: 10.1016/S0950-0618(00)00061-1. [40] F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electrostatic boundary measurements, International Journal of Engineering Science, 29 (1991), 917-937. doi: 10.1016/0020-7225(91)90166-Z. [41] J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Computing and Visualization in Science, 1 (1997), 41-52. [42] E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040. doi: 10.1137/0152060. [43] O.-P. Tossavainen, V. Kolehmainen and M. Vauhkonen, Free-surface and admittivity estimation in electrical impedance tomography, International Journal for Numerical Methods in Engineering, 66 (2006), 1991-2013. doi: 10.1002/nme.1603. [44] O.-P. Tossavainen, M. Vauhkonen, L. M. Heikkinen and T. Savolainen, Estimating shapes and free surfaces with EIT, Measurement Science and Technology, 15 (2004), 1402-1411. [45] P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on thecomplete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160. [46] T. Vilhunen, J. P. Kaipio, P. J. Vauhkonen, T. Savolainen and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory, Measurement Science and Technology, 13 (2002), 1848-1854. doi: 10.1088/0957-0233/13/12/307. [47] R. A. Williams and M. S. Beck, Process Tomography: Principles, Techniques, and Applications, Butterworth-Heinemann, 1995.
 [1] Simon Hubmer, Alexander Ploier, Ronny Ramlau, Peter Fosodeder, Sandrine van Frank. A mathematical approach towards THz tomography for non-destructive imaging. Inverse Problems and Imaging, 2022, 16 (1) : 68-88. doi: 10.3934/ipi.2021041 [2] Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, Aria Abubakar. Electrical impedance tomography with multiplicative regularization. Inverse Problems and Imaging, 2019, 13 (6) : 1139-1159. doi: 10.3934/ipi.2019051 [3] Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems and Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251 [4] Philippe Destuynder, Caroline Fabre. Few remarks on the use of Love waves in non destructive testing. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 427-444. doi: 10.3934/dcdss.2016005 [5] Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems and Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531 [6] Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems and Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217 [7] Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems and Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353 [8] Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems and Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211 [9] Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems and Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417 [10] Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems and Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485 [11] Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423 [12] Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems and Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017 [13] Erfang Ma. Integral formulation of the complete electrode model of electrical impedance tomography. Inverse Problems and Imaging, 2020, 14 (2) : 385-398. doi: 10.3934/ipi.2020017 [14] Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems and Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399 [15] Haigang Li, Jenn-Nan Wang, Ling Wang. Refined stability estimates in electrical impedance tomography with multi-layer structure. Inverse Problems and Imaging, 2022, 16 (1) : 229-249. doi: 10.3934/ipi.2021048 [16] Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems and Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013 [17] Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems and Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767 [18] Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems and Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749 [19] Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems and Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561 [20] Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

2020 Impact Factor: 1.639