February  2014, 8(1): 199-221. doi: 10.3934/ipi.2014.8.199

Heat source identification based on $l_1$ constrained minimization

1. 

University of California, Los Angeles, Los Angeles, CA 90095, United States

2. 

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, United States

3. 

The University of Texas at Austin, Austin, TX 78712, United States

Received  January 2011 Revised  November 2012 Published  March 2014

We consider the inverse problem of finding sparse initial data from the sparsely sampled solutions of the heat equation. The initial data are assumed to be a sum of an unknown but finite number of Dirac delta functions at unknown locations. Point-wise values of the heat solution at only a few locations are used in an $l_1$ constrained optimization to find the initial data. A concept of domain of effective sensing is introduced to speed up the already fast Bregman iterative algorithm for $l_1$ optimization. Furthermore, an algorithm which successively adds new measurements at specially chosen locations is introduced. By comparing the solutions of the inverse problem obtained from different number of measurements, the algorithm decides where to add new measurements in order to improve the reconstruction of the sparse initial data.
Citation: Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems & Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199
References:
[1]

L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization,, USSR Computational Mathematics and Mathematical Physics, 7 (1967), 620.   Google Scholar

[2]

M. Burger, Y. Landa, N. Tanushev and R. Tsai, Discovering point sources in unknown environments,, in WAFR 2008: The Eighth International Workshop on the Algorithmic Foundations of Robotics, 57 (2008), 663.  doi: 10.1007/978-3-642-00312-7_41.  Google Scholar

[3]

J. Cai, S. Osher and Z. Shen, Convergence of the linearized Bregman iteration for $l_1$-norm minimization,, Math. Comp., 78 (2009), 2127.  doi: 10.1090/S0025-5718-09-02242-X.  Google Scholar

[4]

E. J. Candès and T. Tao, Decoding by linear programming,, IEEE Transactions on Information Theory, 51 (2005).   Google Scholar

[5]

Y. Cheng and T. Singh, Source term estimation using convex optimization,, The Eleventh International Conference on Information Fusion, (2008).   Google Scholar

[6]

D. Donoho, Compressed sensing,, IEEE Transactions on Information Theory, 52 (2006), 1289.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[7]

A. El Badia, T. Ha Duong and A. Hamdi, Identification of a point source in a linear advection-dispersion-reaction equation: Application to a pollution source problem,, Inverse Problems, 21 (2005), 1121.  doi: 10.1088/0266-5611/21/3/020.  Google Scholar

[8]

B. Farmer, C. Hall and S. Esedoglu, Source identification from line integral measurements and simple atmospheric models,, Inverse Probl. Imaging, 7 (2013).  doi: 10.3934/ipi.2013.7.471.  Google Scholar

[9]

E. Haber, Numerical methods for optimal experimental design of large-scale ill-posed problems,, Inverse Problems, 24 (2008).   Google Scholar

[10]

Y. Landa, N. Tanushev and R. Tsai, Discovery of point sources in the Helmholtz equation posed in unknown domains with obstacles,, Comm. in Math. Sci., 9 (2011), 903.  doi: 10.4310/CMS.2011.v9.n3.a11.  Google Scholar

[11]

Y. Li and S. Osher, Coordinate descent optimization for L1 minimization with application to compressed sensing; A greedy algorithm,, Inverse Problems and Imaging, 3 (2009).  doi: 10.3934/ipi.2009.3.487.  Google Scholar

[12]

G. Li, Y. Tan, J. Cheng and X. Wang, Determining magnitude of groundwater pollution sources by data compatibility analysis,, Inverse Problem in Science and Engineering, 14 (2006), 287.  doi: 10.1080/17415970500485153.  Google Scholar

[13]

L. Ling and T. Takeuchi, Point sources identification problems for heat equations,, Communications in Computational Physics, 5 (2009), 897.   Google Scholar

[14]

L. Ling, M. Yamamoto, Y. Hon and T. Takeuchi, Identification of source locations in two-dimensional heat equations,, Inverse Problems, 22 (2006), 1289.  doi: 10.1088/0266-5611/22/4/011.  Google Scholar

[15]

A. V. Mamonov and Y.-H. R. Tsai, Point source identification in non-linear advection-diffusion-reaction systems,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/3/035009.  Google Scholar

[16]

S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration,, MMS, 4 (2005), 460.  doi: 10.1137/040605412.  Google Scholar

[17]

Z. Wen, W. Yin, D. Goldfarb and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation,, SIAM J. Scientific Computing, 32 (2010), 1832.  doi: 10.1137/090747695.  Google Scholar

[18]

W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing,, SIAM J. Imaging Sciences, (2008), 143.  doi: 10.1137/070703983.  Google Scholar

show all references

References:
[1]

L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization,, USSR Computational Mathematics and Mathematical Physics, 7 (1967), 620.   Google Scholar

[2]

M. Burger, Y. Landa, N. Tanushev and R. Tsai, Discovering point sources in unknown environments,, in WAFR 2008: The Eighth International Workshop on the Algorithmic Foundations of Robotics, 57 (2008), 663.  doi: 10.1007/978-3-642-00312-7_41.  Google Scholar

[3]

J. Cai, S. Osher and Z. Shen, Convergence of the linearized Bregman iteration for $l_1$-norm minimization,, Math. Comp., 78 (2009), 2127.  doi: 10.1090/S0025-5718-09-02242-X.  Google Scholar

[4]

E. J. Candès and T. Tao, Decoding by linear programming,, IEEE Transactions on Information Theory, 51 (2005).   Google Scholar

[5]

Y. Cheng and T. Singh, Source term estimation using convex optimization,, The Eleventh International Conference on Information Fusion, (2008).   Google Scholar

[6]

D. Donoho, Compressed sensing,, IEEE Transactions on Information Theory, 52 (2006), 1289.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[7]

A. El Badia, T. Ha Duong and A. Hamdi, Identification of a point source in a linear advection-dispersion-reaction equation: Application to a pollution source problem,, Inverse Problems, 21 (2005), 1121.  doi: 10.1088/0266-5611/21/3/020.  Google Scholar

[8]

B. Farmer, C. Hall and S. Esedoglu, Source identification from line integral measurements and simple atmospheric models,, Inverse Probl. Imaging, 7 (2013).  doi: 10.3934/ipi.2013.7.471.  Google Scholar

[9]

E. Haber, Numerical methods for optimal experimental design of large-scale ill-posed problems,, Inverse Problems, 24 (2008).   Google Scholar

[10]

Y. Landa, N. Tanushev and R. Tsai, Discovery of point sources in the Helmholtz equation posed in unknown domains with obstacles,, Comm. in Math. Sci., 9 (2011), 903.  doi: 10.4310/CMS.2011.v9.n3.a11.  Google Scholar

[11]

Y. Li and S. Osher, Coordinate descent optimization for L1 minimization with application to compressed sensing; A greedy algorithm,, Inverse Problems and Imaging, 3 (2009).  doi: 10.3934/ipi.2009.3.487.  Google Scholar

[12]

G. Li, Y. Tan, J. Cheng and X. Wang, Determining magnitude of groundwater pollution sources by data compatibility analysis,, Inverse Problem in Science and Engineering, 14 (2006), 287.  doi: 10.1080/17415970500485153.  Google Scholar

[13]

L. Ling and T. Takeuchi, Point sources identification problems for heat equations,, Communications in Computational Physics, 5 (2009), 897.   Google Scholar

[14]

L. Ling, M. Yamamoto, Y. Hon and T. Takeuchi, Identification of source locations in two-dimensional heat equations,, Inverse Problems, 22 (2006), 1289.  doi: 10.1088/0266-5611/22/4/011.  Google Scholar

[15]

A. V. Mamonov and Y.-H. R. Tsai, Point source identification in non-linear advection-diffusion-reaction systems,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/3/035009.  Google Scholar

[16]

S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration,, MMS, 4 (2005), 460.  doi: 10.1137/040605412.  Google Scholar

[17]

Z. Wen, W. Yin, D. Goldfarb and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation,, SIAM J. Scientific Computing, 32 (2010), 1832.  doi: 10.1137/090747695.  Google Scholar

[18]

W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing,, SIAM J. Imaging Sciences, (2008), 143.  doi: 10.1137/070703983.  Google Scholar

[1]

Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems & Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53

[2]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[3]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

[4]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems & Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[5]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations & Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[6]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[7]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[8]

Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 457-471. doi: 10.3934/cpaa.2009.8.457

[9]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[10]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[11]

Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627

[12]

Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141

[13]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[14]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[15]

Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823

[16]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[17]

A Voutilainen, Jari P. Kaipio. Model reduction and pollution source identification from remote sensing data. Inverse Problems & Imaging, 2009, 3 (4) : 711-730. doi: 10.3934/ipi.2009.3.711

[18]

Brittan Farmer, Cassandra Hall, Selim Esedoḡlu. Source identification from line integral measurements and simple atmospheric models. Inverse Problems & Imaging, 2013, 7 (2) : 471-490. doi: 10.3934/ipi.2013.7.471

[19]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[20]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]