February  2014, 8(1): 23-51. doi: 10.3934/ipi.2014.8.23

The "exterior approach" to solve the inverse obstacle problem for the Stokes system

1. 

Laboratoire POEMS, ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762, Palaiseau Cedex, France

2. 

Institut de Mathématiques, Université de Toulouse, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France

Received  January 2013 Revised  June 2013 Published  March 2014

We apply an ``exterior approach" based on the coupling of a method of quasi-reversibility and of a level set method in order to recover a fixed obstacle immersed in a Stokes flow from boundary measurements. Concerning the method of quasi-reversibility, two new mixed formulations are introduced in order to solve the ill-posed Cauchy problems for the Stokes system by using some classical conforming finite elements. We provide some proofs for the convergence of the quasi-reversibility methods on the one hand and of the level set method on the other hand. Some numerical experiments in $2D$ show the efficiency of the two mixed formulations and of the exterior approach based on one of them.
Citation: Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems & Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23
References:
[1]

C. Fabre and G. Lebeau, Prolongement unique des solutions de Stokes,, Commun. Partial Differ. Eq., 21 (1996), 573.  doi: 10.1080/03605309608821198.  Google Scholar

[2]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system,, Discrete Contin. Dyn. Syst., 28 (2010), 1273.  doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[3]

M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system,, Mathematical Control and Related Fields, 3 (2013), 21.  doi: 10.3934/mcrf.2013.3.21.  Google Scholar

[4]

A. L. Bukhgeim, Extension of solutions of elliptic equations from discrete sets,, J. Inverse Ill-Posed Probl., 1 (1993), 17.  doi: 10.1515/jiip.1993.1.1.17.  Google Scholar

[5]

J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation,, Math. Models Methods Appl. Sci., 18 (2008), 107.  doi: 10.1142/S0218202508002620.  Google Scholar

[6]

A. Ben Abda, I. Ben Saad and M. Hassine, Data completion for the Stokes system,, CRAS Mécanique, 337 (2009), 703.   Google Scholar

[7]

C. Alvarez, C. Conca, L. Fritz and O. Kavian, Identification of immersed obstacles via boundary measurements,, Inverse Problems, 21 (2005), 1531.  doi: 10.1088/0266-5611/21/5/003.  Google Scholar

[8]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/12/125015.  Google Scholar

[9]

N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles,, Engineering Analysis with Boundary Elements, 32 (2008), 517.  doi: 10.1016/j.enganabound.2007.10.011.  Google Scholar

[10]

C. Alvarez, C. Conca, R. Lecaros and J. H. Ortega, On the identification of a rigid body immersed in a fluid: A numerical approach,, Engineering Analysis with Boundary Elements, 32 (2008), 919.  doi: 10.1016/j.enganabound.2007.02.007.  Google Scholar

[11]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods,, Math. Models Methods Appl. Sci., 21 (2011), 2069.  doi: 10.1142/S0218202511005660.  Google Scholar

[12]

F. Caubet, M. Dambrine, D. Kateb and C. D. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid,, Inverse Problems and Imaging, 7 (2013), 123.  doi: 10.3934/ipi.2013.7.123.  Google Scholar

[13]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,, SIAM J. Control and Optimization, 48 (2009), 2871.  doi: 10.1137/070704332.  Google Scholar

[14]

F. Caubet and M. Dambrine, Localization of small obstacles in Stokes flow,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/10/105007.  Google Scholar

[15]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem,, Inverse Problems and Imaging, 4 (2010), 351.  doi: 10.3934/ipi.2010.4.351.  Google Scholar

[16]

J. Dardé, The exterior approach: A new framework to solve inverse obstacle problems,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/1/015008.  Google Scholar

[17]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/4/045001.  Google Scholar

[18]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095010.  Google Scholar

[19]

C. Conca, E. Schwindt and T. Takahashi, On the identifiability of a rigid body moving in a stationary viscous fluid,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/1/015005.  Google Scholar

[20]

L. Bourgeois and J. Dardé, About identification of defects in an elastic-plastic medium from boundary measurements in the antiplane case,, Applicable Analysis, 90 (2011), 1481.  doi: 10.1080/00036811.2010.549481.  Google Scholar

[21]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications,, Dunod, (1983).   Google Scholar

[22]

R. Lattès and J.-L. Lions, Méthode de Quasi-Réversibilité et Applications,, Dunod, (1967).   Google Scholar

[23]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation,, SIAM J. Appl. Math., 51 (1991), 1653.  doi: 10.1137/0151085.  Google Scholar

[24]

P.-G. Ciarlet, The Finite Element Method for Elliptic Problems,, North Holland, (1978).   Google Scholar

[25]

W. Ming and J. Xu, The Morley element for fourth order elliptic equations in any dimensions,, Numerische Mathematik, 103 (2006), 155.  doi: 10.1007/s00211-005-0662-x.  Google Scholar

[26]

G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique,, Dunod, (1972).   Google Scholar

[27]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087.  doi: 10.1088/0266-5611/21/3/018.  Google Scholar

[28]

J. Dardé, A. Hannukaiinen and N. Hyvönen, An $H_{ d i v}$-based mixed quasi-reversibility method for solving elliptic Cauchy problems,, SIAM J. Num. Anal., 51 (2013), 2123.   Google Scholar

[29]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095016.  Google Scholar

[30]

I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels,, Dunod, (1974).   Google Scholar

[31]

S. Osher and J. A. Sethian, Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comp. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[32]

A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique,, Springer, (2005).   Google Scholar

[33]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[34]

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, Freefem++ Manual,, , (2012).   Google Scholar

[35]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations,, Springer-Verlag, (1979).   Google Scholar

show all references

References:
[1]

C. Fabre and G. Lebeau, Prolongement unique des solutions de Stokes,, Commun. Partial Differ. Eq., 21 (1996), 573.  doi: 10.1080/03605309608821198.  Google Scholar

[2]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system,, Discrete Contin. Dyn. Syst., 28 (2010), 1273.  doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[3]

M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system,, Mathematical Control and Related Fields, 3 (2013), 21.  doi: 10.3934/mcrf.2013.3.21.  Google Scholar

[4]

A. L. Bukhgeim, Extension of solutions of elliptic equations from discrete sets,, J. Inverse Ill-Posed Probl., 1 (1993), 17.  doi: 10.1515/jiip.1993.1.1.17.  Google Scholar

[5]

J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation,, Math. Models Methods Appl. Sci., 18 (2008), 107.  doi: 10.1142/S0218202508002620.  Google Scholar

[6]

A. Ben Abda, I. Ben Saad and M. Hassine, Data completion for the Stokes system,, CRAS Mécanique, 337 (2009), 703.   Google Scholar

[7]

C. Alvarez, C. Conca, L. Fritz and O. Kavian, Identification of immersed obstacles via boundary measurements,, Inverse Problems, 21 (2005), 1531.  doi: 10.1088/0266-5611/21/5/003.  Google Scholar

[8]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/12/125015.  Google Scholar

[9]

N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles,, Engineering Analysis with Boundary Elements, 32 (2008), 517.  doi: 10.1016/j.enganabound.2007.10.011.  Google Scholar

[10]

C. Alvarez, C. Conca, R. Lecaros and J. H. Ortega, On the identification of a rigid body immersed in a fluid: A numerical approach,, Engineering Analysis with Boundary Elements, 32 (2008), 919.  doi: 10.1016/j.enganabound.2007.02.007.  Google Scholar

[11]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods,, Math. Models Methods Appl. Sci., 21 (2011), 2069.  doi: 10.1142/S0218202511005660.  Google Scholar

[12]

F. Caubet, M. Dambrine, D. Kateb and C. D. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid,, Inverse Problems and Imaging, 7 (2013), 123.  doi: 10.3934/ipi.2013.7.123.  Google Scholar

[13]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,, SIAM J. Control and Optimization, 48 (2009), 2871.  doi: 10.1137/070704332.  Google Scholar

[14]

F. Caubet and M. Dambrine, Localization of small obstacles in Stokes flow,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/10/105007.  Google Scholar

[15]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem,, Inverse Problems and Imaging, 4 (2010), 351.  doi: 10.3934/ipi.2010.4.351.  Google Scholar

[16]

J. Dardé, The exterior approach: A new framework to solve inverse obstacle problems,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/1/015008.  Google Scholar

[17]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/4/045001.  Google Scholar

[18]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095010.  Google Scholar

[19]

C. Conca, E. Schwindt and T. Takahashi, On the identifiability of a rigid body moving in a stationary viscous fluid,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/1/015005.  Google Scholar

[20]

L. Bourgeois and J. Dardé, About identification of defects in an elastic-plastic medium from boundary measurements in the antiplane case,, Applicable Analysis, 90 (2011), 1481.  doi: 10.1080/00036811.2010.549481.  Google Scholar

[21]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications,, Dunod, (1983).   Google Scholar

[22]

R. Lattès and J.-L. Lions, Méthode de Quasi-Réversibilité et Applications,, Dunod, (1967).   Google Scholar

[23]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation,, SIAM J. Appl. Math., 51 (1991), 1653.  doi: 10.1137/0151085.  Google Scholar

[24]

P.-G. Ciarlet, The Finite Element Method for Elliptic Problems,, North Holland, (1978).   Google Scholar

[25]

W. Ming and J. Xu, The Morley element for fourth order elliptic equations in any dimensions,, Numerische Mathematik, 103 (2006), 155.  doi: 10.1007/s00211-005-0662-x.  Google Scholar

[26]

G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique,, Dunod, (1972).   Google Scholar

[27]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087.  doi: 10.1088/0266-5611/21/3/018.  Google Scholar

[28]

J. Dardé, A. Hannukaiinen and N. Hyvönen, An $H_{ d i v}$-based mixed quasi-reversibility method for solving elliptic Cauchy problems,, SIAM J. Num. Anal., 51 (2013), 2123.   Google Scholar

[29]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095016.  Google Scholar

[30]

I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels,, Dunod, (1974).   Google Scholar

[31]

S. Osher and J. A. Sethian, Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comp. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[32]

A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique,, Springer, (2005).   Google Scholar

[33]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[34]

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, Freefem++ Manual,, , (2012).   Google Scholar

[35]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations,, Springer-Verlag, (1979).   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[5]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[6]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[7]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[8]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[9]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[18]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]