February  2014, 8(1): 23-51. doi: 10.3934/ipi.2014.8.23

The "exterior approach" to solve the inverse obstacle problem for the Stokes system

1. 

Laboratoire POEMS, ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762, Palaiseau Cedex, France

2. 

Institut de Mathématiques, Université de Toulouse, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France

Received  January 2013 Revised  June 2013 Published  March 2014

We apply an ``exterior approach" based on the coupling of a method of quasi-reversibility and of a level set method in order to recover a fixed obstacle immersed in a Stokes flow from boundary measurements. Concerning the method of quasi-reversibility, two new mixed formulations are introduced in order to solve the ill-posed Cauchy problems for the Stokes system by using some classical conforming finite elements. We provide some proofs for the convergence of the quasi-reversibility methods on the one hand and of the level set method on the other hand. Some numerical experiments in $2D$ show the efficiency of the two mixed formulations and of the exterior approach based on one of them.
Citation: Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems and Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23
References:
[1]

C. Fabre and G. Lebeau, Prolongement unique des solutions de Stokes, Commun. Partial Differ. Eq., 21 (1996), 573-596. doi: 10.1080/03605309608821198.

[2]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst., 28 (2010), 1273-1290. doi: 10.3934/dcds.2010.28.1273.

[3]

M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system, Mathematical Control and Related Fields, 3 (2013), 21-49. doi: 10.3934/mcrf.2013.3.21.

[4]

A. L. Bukhgeim, Extension of solutions of elliptic equations from discrete sets, J. Inverse Ill-Posed Probl., 1 (1993), 17-32. doi: 10.1515/jiip.1993.1.1.17.

[5]

J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation, Math. Models Methods Appl. Sci., 18 (2008), 107-123. doi: 10.1142/S0218202508002620.

[6]

A. Ben Abda, I. Ben Saad and M. Hassine, Data completion for the Stokes system, CRAS Mécanique, 337 (2009), 703-708.

[7]

C. Alvarez, C. Conca, L. Fritz and O. Kavian, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552. doi: 10.1088/0266-5611/21/5/003.

[8]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid, Inverse Problems, 26 (2010), 125015. doi: 10.1088/0266-5611/26/12/125015.

[9]

N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles, Engineering Analysis with Boundary Elements, 32 (2008), 517-524. doi: 10.1016/j.enganabound.2007.10.011.

[10]

C. Alvarez, C. Conca, R. Lecaros and J. H. Ortega, On the identification of a rigid body immersed in a fluid: A numerical approach, Engineering Analysis with Boundary Elements, 32 (2008), 919-925. doi: 10.1016/j.enganabound.2007.02.007.

[11]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101. doi: 10.1142/S0218202511005660.

[12]

F. Caubet, M. Dambrine, D. Kateb and C. D. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid, Inverse Problems and Imaging, 7 (2013), 123-157. doi: 10.3934/ipi.2013.7.123.

[13]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control and Optimization, 48 (2009), 2871-2900. doi: 10.1137/070704332.

[14]

F. Caubet and M. Dambrine, Localization of small obstacles in Stokes flow, Inverse Problems, 28 (2012), 105007. doi: 10.1088/0266-5611/28/10/105007.

[15]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Problems and Imaging, 4 (2010), 351-377. doi: 10.3934/ipi.2010.4.351.

[16]

J. Dardé, The exterior approach: A new framework to solve inverse obstacle problems, Inverse Problems, 28 (2012), 015008. doi: 10.1088/0266-5611/28/1/015008.

[17]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement, Inverse Problems, 24 (2008), 045001. doi: 10.1088/0266-5611/24/4/045001.

[18]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010. doi: 10.1088/0266-5611/26/9/095010.

[19]

C. Conca, E. Schwindt and T. Takahashi, On the identifiability of a rigid body moving in a stationary viscous fluid, Inverse Problems, 28 (2012), 015005. doi: 10.1088/0266-5611/28/1/015005.

[20]

L. Bourgeois and J. Dardé, About identification of defects in an elastic-plastic medium from boundary measurements in the antiplane case, Applicable Analysis, 90 (2011), 1481-1497. doi: 10.1080/00036811.2010.549481.

[21]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Dunod, Paris, 1983.

[22]

R. Lattès and J.-L. Lions, Méthode de Quasi-Réversibilité et Applications, Dunod, Paris, 1967.

[23]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation, SIAM J. Appl. Math., 51 (1991), 1653-1675. doi: 10.1137/0151085.

[24]

P.-G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.

[25]

W. Ming and J. Xu, The Morley element for fourth order elliptic equations in any dimensions, Numerische Mathematik, 103 (2006), 155-169. doi: 10.1007/s00211-005-0662-x.

[26]

G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.

[27]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation, Inverse Problems, 21 (2005), 1087-1104. doi: 10.1088/0266-5611/21/3/018.

[28]

J. Dardé, A. Hannukaiinen and N. Hyvönen, An $H_{ d i v}$-based mixed quasi-reversibility method for solving elliptic Cauchy problems, SIAM J. Num. Anal., 51 (2013), 2123-2148.

[29]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data, Inverse Problems, 26 (2010), 095016. doi: 10.1088/0266-5611/26/9/095016.

[30]

I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, 1974.

[31]

S. Osher and J. A. Sethian, Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2.

[32]

A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique, Springer, Paris, 2005.

[33]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New-York, 1991. doi: 10.1007/978-1-4612-3172-1.

[34]

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, Freefem++ Manual, http://www.freefem.org/ff++/ftp/freefem++doc.pdf, 2012.

[35]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1979.

show all references

References:
[1]

C. Fabre and G. Lebeau, Prolongement unique des solutions de Stokes, Commun. Partial Differ. Eq., 21 (1996), 573-596. doi: 10.1080/03605309608821198.

[2]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst., 28 (2010), 1273-1290. doi: 10.3934/dcds.2010.28.1273.

[3]

M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system, Mathematical Control and Related Fields, 3 (2013), 21-49. doi: 10.3934/mcrf.2013.3.21.

[4]

A. L. Bukhgeim, Extension of solutions of elliptic equations from discrete sets, J. Inverse Ill-Posed Probl., 1 (1993), 17-32. doi: 10.1515/jiip.1993.1.1.17.

[5]

J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation, Math. Models Methods Appl. Sci., 18 (2008), 107-123. doi: 10.1142/S0218202508002620.

[6]

A. Ben Abda, I. Ben Saad and M. Hassine, Data completion for the Stokes system, CRAS Mécanique, 337 (2009), 703-708.

[7]

C. Alvarez, C. Conca, L. Fritz and O. Kavian, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552. doi: 10.1088/0266-5611/21/5/003.

[8]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid, Inverse Problems, 26 (2010), 125015. doi: 10.1088/0266-5611/26/12/125015.

[9]

N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles, Engineering Analysis with Boundary Elements, 32 (2008), 517-524. doi: 10.1016/j.enganabound.2007.10.011.

[10]

C. Alvarez, C. Conca, R. Lecaros and J. H. Ortega, On the identification of a rigid body immersed in a fluid: A numerical approach, Engineering Analysis with Boundary Elements, 32 (2008), 919-925. doi: 10.1016/j.enganabound.2007.02.007.

[11]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101. doi: 10.1142/S0218202511005660.

[12]

F. Caubet, M. Dambrine, D. Kateb and C. D. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid, Inverse Problems and Imaging, 7 (2013), 123-157. doi: 10.3934/ipi.2013.7.123.

[13]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control and Optimization, 48 (2009), 2871-2900. doi: 10.1137/070704332.

[14]

F. Caubet and M. Dambrine, Localization of small obstacles in Stokes flow, Inverse Problems, 28 (2012), 105007. doi: 10.1088/0266-5611/28/10/105007.

[15]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Problems and Imaging, 4 (2010), 351-377. doi: 10.3934/ipi.2010.4.351.

[16]

J. Dardé, The exterior approach: A new framework to solve inverse obstacle problems, Inverse Problems, 28 (2012), 015008. doi: 10.1088/0266-5611/28/1/015008.

[17]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement, Inverse Problems, 24 (2008), 045001. doi: 10.1088/0266-5611/24/4/045001.

[18]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010. doi: 10.1088/0266-5611/26/9/095010.

[19]

C. Conca, E. Schwindt and T. Takahashi, On the identifiability of a rigid body moving in a stationary viscous fluid, Inverse Problems, 28 (2012), 015005. doi: 10.1088/0266-5611/28/1/015005.

[20]

L. Bourgeois and J. Dardé, About identification of defects in an elastic-plastic medium from boundary measurements in the antiplane case, Applicable Analysis, 90 (2011), 1481-1497. doi: 10.1080/00036811.2010.549481.

[21]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Dunod, Paris, 1983.

[22]

R. Lattès and J.-L. Lions, Méthode de Quasi-Réversibilité et Applications, Dunod, Paris, 1967.

[23]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation, SIAM J. Appl. Math., 51 (1991), 1653-1675. doi: 10.1137/0151085.

[24]

P.-G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.

[25]

W. Ming and J. Xu, The Morley element for fourth order elliptic equations in any dimensions, Numerische Mathematik, 103 (2006), 155-169. doi: 10.1007/s00211-005-0662-x.

[26]

G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.

[27]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation, Inverse Problems, 21 (2005), 1087-1104. doi: 10.1088/0266-5611/21/3/018.

[28]

J. Dardé, A. Hannukaiinen and N. Hyvönen, An $H_{ d i v}$-based mixed quasi-reversibility method for solving elliptic Cauchy problems, SIAM J. Num. Anal., 51 (2013), 2123-2148.

[29]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data, Inverse Problems, 26 (2010), 095016. doi: 10.1088/0266-5611/26/9/095016.

[30]

I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, 1974.

[31]

S. Osher and J. A. Sethian, Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2.

[32]

A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique, Springer, Paris, 2005.

[33]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New-York, 1991. doi: 10.1007/978-1-4612-3172-1.

[34]

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, Freefem++ Manual, http://www.freefem.org/ff++/ftp/freefem++doc.pdf, 2012.

[35]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1979.

[1]

Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems and Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[4]

Jérémi Dardé. Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Inverse Problems and Imaging, 2016, 10 (2) : 379-407. doi: 10.3934/ipi.2016005

[5]

Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems and Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459

[6]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[7]

Gianmarco Manzini, Annamaria Mazzia. A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem. Journal of Computational Dynamics, 2022, 9 (2) : 207-238. doi: 10.3934/jcd.2021020

[8]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[9]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[10]

Lekbir Afraites. A new coupled complex boundary method (CCBM) for an inverse obstacle problem. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 23-40. doi: 10.3934/dcdss.2021069

[11]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[12]

Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems and Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479

[13]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[14]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[15]

Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109

[16]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[17]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29 (5) : 3171-3191. doi: 10.3934/era.2021032

[18]

Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2849-2871. doi: 10.3934/dcdsb.2021163

[19]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[20]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]