-
Previous Article
Towards deconvolution to enhance the grid method for in-plane strain measurement
- IPI Home
- This Issue
-
Next Article
Superiorization of EM algorithm and its application in Single-Photon Emission Computed Tomography(SPECT)
The linearized problem of magneto-photoelasticity
1. | Sobolev Institute of Mathematics and Novosibirsk State University, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation |
References:
[1] |
H. Aben, Magnetophotoelasticity - photoelasticity in a magnetic field, Experimental Mechanics, 10 (1970), 97-105. |
[2] |
H. Aben, Integrated Photoelasticity, McGraw Hill, New York - London 1979. |
[3] |
G. P. Clarc, H. W. McKenzie and P. Stanley, The magnetophotoelastic analysis of residual stresses in thermally toughened glass, Proc. of the Royal Society of London A, 455 (1999), 1149-1173. |
[4] |
S. Gibson, G. W. Jewel and R. A. Tomlinson, Full-field pulsed magnetophototlasticity, J. of Strain Analysis for Engineering Design, 41 (2006), 161-182. |
[5] |
Yu. Kravtsov, "Quasi-isotropic'' approximation of geometric optics, Dokl. Acad. Nauk SSSR, 183 (1968), 74-76. |
[6] |
L. Landau and E. Lifshitz, Theoretical Physics. VIII Electrodynamics of Continuous Media, (Russian) 2nd edition, Nauka, Moscow, 1982. |
[7] |
H. Poincaré, Théory Mathématique de la Lumiére. Reprint of the 1889 and 1892 Originals, Éditions Jacques, Sceaux, 1995. |
[8] |
F. E. Puro, Magnetophotoelasticity as parametric tensor field tomography, Inverse Problems, 14 (1998), 1315-1330. Éditions Jacques, Sceaux, (1995). |
[9] |
V. A. Sharafutdinov, The method of integral photoelasticity in the case of weak optical anisotropy, Eesti NSV Tead. Acad. Toimetised Fuus.-Mat., 38 (1989), 379-389. |
[10] |
V. Sharafutdinov, Integral Geometry of Tensor Field, VSP, Utrecht, the Netherlands, 1994.
doi: 10.1515/9783110900095. |
show all references
References:
[1] |
H. Aben, Magnetophotoelasticity - photoelasticity in a magnetic field, Experimental Mechanics, 10 (1970), 97-105. |
[2] |
H. Aben, Integrated Photoelasticity, McGraw Hill, New York - London 1979. |
[3] |
G. P. Clarc, H. W. McKenzie and P. Stanley, The magnetophotoelastic analysis of residual stresses in thermally toughened glass, Proc. of the Royal Society of London A, 455 (1999), 1149-1173. |
[4] |
S. Gibson, G. W. Jewel and R. A. Tomlinson, Full-field pulsed magnetophototlasticity, J. of Strain Analysis for Engineering Design, 41 (2006), 161-182. |
[5] |
Yu. Kravtsov, "Quasi-isotropic'' approximation of geometric optics, Dokl. Acad. Nauk SSSR, 183 (1968), 74-76. |
[6] |
L. Landau and E. Lifshitz, Theoretical Physics. VIII Electrodynamics of Continuous Media, (Russian) 2nd edition, Nauka, Moscow, 1982. |
[7] |
H. Poincaré, Théory Mathématique de la Lumiére. Reprint of the 1889 and 1892 Originals, Éditions Jacques, Sceaux, 1995. |
[8] |
F. E. Puro, Magnetophotoelasticity as parametric tensor field tomography, Inverse Problems, 14 (1998), 1315-1330. Éditions Jacques, Sceaux, (1995). |
[9] |
V. A. Sharafutdinov, The method of integral photoelasticity in the case of weak optical anisotropy, Eesti NSV Tead. Acad. Toimetised Fuus.-Mat., 38 (1989), 379-389. |
[10] |
V. Sharafutdinov, Integral Geometry of Tensor Field, VSP, Utrecht, the Netherlands, 1994.
doi: 10.1515/9783110900095. |
[1] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
[2] |
Bertold Bongardt. Geometric characterization of the workspace of non-orthogonal rotation axes. Journal of Geometric Mechanics, 2014, 6 (2) : 141-166. doi: 10.3934/jgm.2014.6.141 |
[3] |
Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386 |
[4] |
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89 |
[5] |
Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 649-666. doi: 10.3934/dcds.2004.11.649 |
[6] |
Hongyu Liu, Ting Zhou. Two dimensional invisibility cloaking via transformation optics. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 525-543. doi: 10.3934/dcds.2011.31.525 |
[7] |
Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711 |
[8] |
Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007 |
[9] |
Arek Goetz. Dynamics of a piecewise rotation. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593 |
[10] |
Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169 |
[11] |
Jean-Marie Souriau. On Geometric Mechanics. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595 |
[12] |
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617 |
[13] |
David Cowan. A billiard model for a gas of particles with rotation. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101 |
[14] |
Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315 |
[15] |
Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems and Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991 |
[16] |
Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems and Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035 |
[17] |
Bruce Hughes. Geometric topology of stratified spaces. Electronic Research Announcements, 1996, 2: 73-81. |
[18] |
Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267 |
[19] |
Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems and Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173 |
[20] |
Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]