\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

PHLST with adaptive tiling and its application to antarctic remote sensing image approximation

Abstract / Introduction Related Papers Cited by
  • We propose an efficient nonlinear approximation scheme using the Polyharmonic Local Sine Transform (PHLST) of Saito and Remy combined with an algorithm to tile a given image automatically and adaptively according to its local smoothness and singularities. To measure such local smoothness, we introduce the so-called local Besov indices of an image, which is based on the pointwise modulus of smoothness of the image. Such an adaptive tiling of an image is important for image approximation using PHLST because PHLST stores the corner and boundary information of each tile and consequently it is wasteful to divide a smooth region of a given image into a set of smaller tiles. We demonstrate the superiority of the proposed algorithm using Antarctic remote sensing images over the PHLST using the uniform tiling. Analysis of such images including their efficient approximation and compression has gained its importance due to the global climate change.
    Mathematics Subject Classification: Primary: 42C40, 65D18; Secondary: 68W25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Averbuch, M. Israeli and L. Vozovoi, A fast Poisson solver of arbitrary order accuracy in rectangular regions, SIAM J. Sci. Comput., 19 (1998), 933-952.doi: 10.1137/S1064827595288589.

    [2]

    E. Braverman, M. Israeli, A. Averbuch and L. Vozovoi, A fast 3D Poisson solver of arbitrary order accuracy, J. Comput. Phys., 144 (1998), 109-136.doi: 10.1006/jcph.1998.6001.

    [3]

    J. F. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Machine Intell., 8 (1986), 679-698.doi: 10.1109/TPAMI.1986.4767851.

    [4]

    R. A. DeVore and V. N. Temlyakov, Nonlinear approximation by trigonometric sums, J. Fourier Anal. Appl., 2 (1995), 29-48.doi: 10.1007/s00041-001-4021-8.

    [5]

    R. R. Coifman and Y. Meyer, Remarques sur l'analyse de Fourier à fenêtre, Comptes Rendus Acad. Sci. Paris, Serie I, 312 (1991), 259-261.

    [6]

    J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1990.

    [7]

    G. G. Lorentz, Approximation of Functions, 2nd Ed., Chelsea Pub. Co., New York, 1986.doi: 10.2307/2008020.

    [8]

    H. S. Malvar, Lapped transforms for efficient transform/subband coding, IEEE Trans. Acoust., Speech, Signal Process., 38 (1990), 969-978.doi: 10.1109/29.56057.

    [9]

    H. S. Malvar and D. H. Staelin, The LOT: Transform coding without blocking effects, IEEE Trans. Acoust., Speech, Signal Process., 37 (1989), 553-559.doi: 10.1109/29.17536.

    [10]

    J. R. Parker, Algorithms for Image Processing and Computer Vision, John Wiley & Sons, Inc., New York, 1997.

    [11]

    N. Saito and J.-F. Remy, The polyharmonic local sine transform: A new tool for local image analysis and synthesis without edge effect, Appl. Comput. Harmon. Anal., 20 (2006), 41-73.doi: 10.1016/j.acha.2005.01.005.

    [12]

    G. Strang, The discrete cosine transform, SIAM Review, 41 (1999), 135-147.doi: 10.1137/S0036144598336745.

    [13]

    A. F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan, New York, 1963.

    [14]

    A. Zygmund, Trigonometric Series, 3rd Edition, Cambridge University Press, 2003.doi: 10.2307/1989363.

  • 加载中
SHARE

Article Metrics

HTML views(854) PDF downloads(41) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return