May  2014, 8(2): 339-359. doi: 10.3934/ipi.2014.8.339

Exterior/interior problem for the circular means transform with applications to intravascular imaging

1. 

Department of Mathematics, University of Texas, Arlington, TX 76019, United States

2. 

Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ 85721

Received  August 2013 Revised  December 2013 Published  May 2014

Exterior inverse problem for the circular means transform (CMT) arises in the intravascular photoacoustic imaging (IVPA), in the intravascular ultrasound imaging (IVUS), as well as in radar and sonar. The reduction of the IPVA to the CMT is quite straightforward. As shown in the paper, in IVUS the circular means can be recovered from measurements by solving a certain Volterra integral equation. Thus, a tomography reconstruction in both modalities requires solving the exterior problem for the CMT.
    Numerical solution of this problem usually is not attempted due to the presence of "invisible" wavefronts, which results in severe instability of the reconstruction. The novel inversion algorithm proposed in this paper yields a stable partial reconstruction: it reproduces the "visible" part of the image and blurs the "invisible" part. If the image contains little or no invisible wavefronts (as frequently happens in the IVPA and IVUS) the reconstruction is quantitatively accurate. The presented numerical simulations demonstrate the feasibility of tomography-like reconstruction in these modalities.
Citation: Gaik Ambartsoumian, Leonid Kunyansky. Exterior/interior problem for the circular means transform with applications to intravascular imaging. Inverse Problems and Imaging, 2014, 8 (2) : 339-359. doi: 10.3934/ipi.2014.8.339
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964 xiv+1046 pp. doi: 10.1119/1.1972842.

[2]

G. Ambartsoumian, R. Gouia-Zarrad and M. Lewis, Inversion of the circular Radon transform on an annulus, Inverse Problems, 26 (2010), 105015. doi: 10.1088/0266-5611/26/10/105015.

[3]

G. Ambartsoumian and P. Kuchment, A range description for the planar circular Radon transform, SIAM J. Math. Anal., 38 (2006), 681-692. doi: 10.1137/050637492.

[4]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier and G. Paltauf, Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors, Inverse Problems, 23 (2007), S65-S80. doi: 10.1088/0266-5611/23/6/S06.

[5]

M. Cheney and B. Borden, Fundamentals of Radar Imaging, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719291.

[6]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.

[7]

S. Emelianov, B. Wang, J. Su, A. Karpiouk, E. Yantsen, K. Sokolov, J. Amirian, R. Smalling and S. Sethuraman, Intravascular ultrasound and photoacoustic imaging, Proceedings of the 30-th Annual International IEEE EMBS Conference, Vancouver, Canada (2008), 2-5. doi: 10.1109/IEMBS.2008.4649075.

[8]

D. Finch and Rakesh, The spherical mean value operator with centers on a sphere, Inverse Problems, 23 (2007), S37-S49. doi: 10.1088/0266-5611/23/6/S04.

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster and G. Paltauf, Thermoacoustic tomography and the circular Radon transform: Exact inversion formula, Mathematical Models and Methods in Applied Sciences, 17 (2007), 635-655. doi: 10.1142/S0218202507002054.

[10]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography, European J. Appl. Math., 19 (2008), 191-224. doi: 10.1017/S0956792508007353.

[11]

L. Kunyansky, Inversion of the 3D exponential parallel-beam transform and the Radon transform with angle-dependent attenuation, Inverse Problems 20 (2004), 1455-1478. doi: 10.1088/0266-5611/20/5/008.

[12]

L. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries, Inverse Problems and Imaging, 6 (2012), 111-131. doi: 10.3934/ipi.2012.6.111.

[13]

A. Louis and E. T. Quinto, Local tomographic methods in Sonar, in Surveys on solution methods for inverse problems, 147-154, Springer, Vienna, 2000.

[14]

L. V. Nguyen, On singularities and instability of reconstruction in thermoacoustic tomography, in Tomography and inverse transport theory, Contemporary Mathematics 559 (2011), 163-170. doi: 10.1090/conm/559/11078.

[15]

S. J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution, J. Acoust. Soc. Am., 67 (1980), 1266-1273. doi: 10.1121/1.384168.

[16]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling and S. Y. Emelianov, Development of a combined intravascular ultrasound and photoacoustic imaging system, Photon Plus Ultrasound: Imaging and Sensing 2006, The 7-th Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (ed. A. A. Oraevsky) Proc. of SPIE 6086 (2006), 60860F.

[17]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling and S. Y. Emelianov, Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques, Optics Express, 16 (2008), 3362-3367. doi: 10.1364/OE.16.003362.

[18]

Sethuraman, S. Mallidi, S. R. Aglyamov, J. H. Amirian, S. Litovsky, R. W. Smalling and S. Y. Emelianov, Intravascular photoacoustic imaging of atherosclerotic plaques: ex vivo study using a rabbit model of atherosclerosis, Photon Plus Ultrasound: Imaging and Sensing 2007, The 8-th Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (ed. A. A. Oraevsky and L. V. Wang) Proc. of SPIE 66437 (2007), 643729.

[19]

V. S. Vladimirov, Equations of Mathematical Physics, (Translated from the Russian by Audrey Littlewood. Edited by Alan Jeffrey.) Pure and Applied Mathematics, 3 Marcel Dekker, New York, 1971.

[20]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling and S. Emelianov, Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging, Optics Express, 18 (2010), 4889-4897. doi: 10.1364/OE.18.004889.

[21]

Y. Xu, L.-H. Wang, G. Ambartsoumian and P. Kuchment, Limited view thermoacoustic tomography, Photoacoustic imaging and spectroscopy, {CRC Press} (2009), 61-73. doi: 10.1201/9781420059922.ch6.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964 xiv+1046 pp. doi: 10.1119/1.1972842.

[2]

G. Ambartsoumian, R. Gouia-Zarrad and M. Lewis, Inversion of the circular Radon transform on an annulus, Inverse Problems, 26 (2010), 105015. doi: 10.1088/0266-5611/26/10/105015.

[3]

G. Ambartsoumian and P. Kuchment, A range description for the planar circular Radon transform, SIAM J. Math. Anal., 38 (2006), 681-692. doi: 10.1137/050637492.

[4]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier and G. Paltauf, Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors, Inverse Problems, 23 (2007), S65-S80. doi: 10.1088/0266-5611/23/6/S06.

[5]

M. Cheney and B. Borden, Fundamentals of Radar Imaging, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719291.

[6]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.

[7]

S. Emelianov, B. Wang, J. Su, A. Karpiouk, E. Yantsen, K. Sokolov, J. Amirian, R. Smalling and S. Sethuraman, Intravascular ultrasound and photoacoustic imaging, Proceedings of the 30-th Annual International IEEE EMBS Conference, Vancouver, Canada (2008), 2-5. doi: 10.1109/IEMBS.2008.4649075.

[8]

D. Finch and Rakesh, The spherical mean value operator with centers on a sphere, Inverse Problems, 23 (2007), S37-S49. doi: 10.1088/0266-5611/23/6/S04.

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster and G. Paltauf, Thermoacoustic tomography and the circular Radon transform: Exact inversion formula, Mathematical Models and Methods in Applied Sciences, 17 (2007), 635-655. doi: 10.1142/S0218202507002054.

[10]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography, European J. Appl. Math., 19 (2008), 191-224. doi: 10.1017/S0956792508007353.

[11]

L. Kunyansky, Inversion of the 3D exponential parallel-beam transform and the Radon transform with angle-dependent attenuation, Inverse Problems 20 (2004), 1455-1478. doi: 10.1088/0266-5611/20/5/008.

[12]

L. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries, Inverse Problems and Imaging, 6 (2012), 111-131. doi: 10.3934/ipi.2012.6.111.

[13]

A. Louis and E. T. Quinto, Local tomographic methods in Sonar, in Surveys on solution methods for inverse problems, 147-154, Springer, Vienna, 2000.

[14]

L. V. Nguyen, On singularities and instability of reconstruction in thermoacoustic tomography, in Tomography and inverse transport theory, Contemporary Mathematics 559 (2011), 163-170. doi: 10.1090/conm/559/11078.

[15]

S. J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution, J. Acoust. Soc. Am., 67 (1980), 1266-1273. doi: 10.1121/1.384168.

[16]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling and S. Y. Emelianov, Development of a combined intravascular ultrasound and photoacoustic imaging system, Photon Plus Ultrasound: Imaging and Sensing 2006, The 7-th Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (ed. A. A. Oraevsky) Proc. of SPIE 6086 (2006), 60860F.

[17]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling and S. Y. Emelianov, Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques, Optics Express, 16 (2008), 3362-3367. doi: 10.1364/OE.16.003362.

[18]

Sethuraman, S. Mallidi, S. R. Aglyamov, J. H. Amirian, S. Litovsky, R. W. Smalling and S. Y. Emelianov, Intravascular photoacoustic imaging of atherosclerotic plaques: ex vivo study using a rabbit model of atherosclerosis, Photon Plus Ultrasound: Imaging and Sensing 2007, The 8-th Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (ed. A. A. Oraevsky and L. V. Wang) Proc. of SPIE 66437 (2007), 643729.

[19]

V. S. Vladimirov, Equations of Mathematical Physics, (Translated from the Russian by Audrey Littlewood. Edited by Alan Jeffrey.) Pure and Applied Mathematics, 3 Marcel Dekker, New York, 1971.

[20]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling and S. Emelianov, Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging, Optics Express, 18 (2010), 4889-4897. doi: 10.1364/OE.18.004889.

[21]

Y. Xu, L.-H. Wang, G. Ambartsoumian and P. Kuchment, Limited view thermoacoustic tomography, Photoacoustic imaging and spectroscopy, {CRC Press} (2009), 61-73. doi: 10.1201/9781420059922.ch6.

[1]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[2]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[3]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[4]

Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems and Imaging, 2014, 8 (3) : 811-829. doi: 10.3934/ipi.2014.8.811

[5]

Lee Patrolia. Quantitative photoacoustic tomography with variable index of refraction. Inverse Problems and Imaging, 2013, 7 (1) : 253-265. doi: 10.3934/ipi.2013.7.253

[6]

Benjamin Palacios. Photoacoustic tomography in attenuating media with partial data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022013

[7]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[8]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems and Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[9]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[10]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[11]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[12]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems and Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[13]

Chase Mathison. Thermoacoustic Tomography with circular integrating detectors and variable wave speed. Inverse Problems and Imaging, 2020, 14 (4) : 665-682. doi: 10.3934/ipi.2020030

[14]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems and Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[15]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[16]

Shanshan Wang, Yanxia Chen, Taohui Xiao, Lei Zhang, Xin Liu, Hairong Zheng. LANTERN: Learn analysis transform network for dynamic magnetic resonance imaging. Inverse Problems and Imaging, 2021, 15 (6) : 1363-1379. doi: 10.3934/ipi.2020051

[17]

Simon Hubmer, Alexander Ploier, Ronny Ramlau, Peter Fosodeder, Sandrine van Frank. A mathematical approach towards THz tomography for non-destructive imaging. Inverse Problems and Imaging, 2022, 16 (1) : 68-88. doi: 10.3934/ipi.2021041

[18]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems and Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[19]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[20]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]