May  2014, 8(2): 339-359. doi: 10.3934/ipi.2014.8.339

Exterior/interior problem for the circular means transform with applications to intravascular imaging

1. 

Department of Mathematics, University of Texas, Arlington, TX 76019, United States

2. 

Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ 85721

Received  August 2013 Revised  December 2013 Published  May 2014

Exterior inverse problem for the circular means transform (CMT) arises in the intravascular photoacoustic imaging (IVPA), in the intravascular ultrasound imaging (IVUS), as well as in radar and sonar. The reduction of the IPVA to the CMT is quite straightforward. As shown in the paper, in IVUS the circular means can be recovered from measurements by solving a certain Volterra integral equation. Thus, a tomography reconstruction in both modalities requires solving the exterior problem for the CMT.
    Numerical solution of this problem usually is not attempted due to the presence of "invisible" wavefronts, which results in severe instability of the reconstruction. The novel inversion algorithm proposed in this paper yields a stable partial reconstruction: it reproduces the "visible" part of the image and blurs the "invisible" part. If the image contains little or no invisible wavefronts (as frequently happens in the IVPA and IVUS) the reconstruction is quantitatively accurate. The presented numerical simulations demonstrate the feasibility of tomography-like reconstruction in these modalities.
Citation: Gaik Ambartsoumian, Leonid Kunyansky. Exterior/interior problem for the circular means transform with applications to intravascular imaging. Inverse Problems & Imaging, 2014, 8 (2) : 339-359. doi: 10.3934/ipi.2014.8.339
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, National Bureau of Standards Applied Mathematics Series, (1964).  doi: 10.1119/1.1972842.  Google Scholar

[2]

G. Ambartsoumian, R. Gouia-Zarrad and M. Lewis, Inversion of the circular Radon transform on an annulus,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105015.  Google Scholar

[3]

G. Ambartsoumian and P. Kuchment, A range description for the planar circular Radon transform,, SIAM J. Math. Anal., 38 (2006), 681.  doi: 10.1137/050637492.  Google Scholar

[4]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier and G. Paltauf, Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,, Inverse Problems, 23 (2007).  doi: 10.1088/0266-5611/23/6/S06.  Google Scholar

[5]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, Society for Industrial and Applied Mathematics (SIAM), (2009).  doi: 10.1137/1.9780898719291.  Google Scholar

[6]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1992).   Google Scholar

[7]

S. Emelianov, B. Wang, J. Su, A. Karpiouk, E. Yantsen, K. Sokolov, J. Amirian, R. Smalling and S. Sethuraman, Intravascular ultrasound and photoacoustic imaging,, Proceedings of the 30-th Annual International IEEE EMBS Conference, (2008), 2.  doi: 10.1109/IEMBS.2008.4649075.  Google Scholar

[8]

D. Finch and Rakesh, The spherical mean value operator with centers on a sphere,, Inverse Problems, 23 (2007).  doi: 10.1088/0266-5611/23/6/S04.  Google Scholar

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster and G. Paltauf, Thermoacoustic tomography and the circular Radon transform: Exact inversion formula,, Mathematical Models and Methods in Applied Sciences, 17 (2007), 635.  doi: 10.1142/S0218202507002054.  Google Scholar

[10]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.  doi: 10.1017/S0956792508007353.  Google Scholar

[11]

L. Kunyansky, Inversion of the 3D exponential parallel-beam transform and the Radon transform with angle-dependent attenuation,, Inverse Problems 20 (2004), 20 (2004), 1455.  doi: 10.1088/0266-5611/20/5/008.  Google Scholar

[12]

L. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries,, Inverse Problems and Imaging, 6 (2012), 111.  doi: 10.3934/ipi.2012.6.111.  Google Scholar

[13]

A. Louis and E. T. Quinto, Local tomographic methods in Sonar,, in Surveys on solution methods for inverse problems, (2000), 147.   Google Scholar

[14]

L. V. Nguyen, On singularities and instability of reconstruction in thermoacoustic tomography,, in Tomography and inverse transport theory, 559 (2011), 163.  doi: 10.1090/conm/559/11078.  Google Scholar

[15]

S. J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution,, J. Acoust. Soc. Am., 67 (1980), 1266.  doi: 10.1121/1.384168.  Google Scholar

[16]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling and S. Y. Emelianov, Development of a combined intravascular ultrasound and photoacoustic imaging system,, Photon Plus Ultrasound: Imaging and Sensing 2006, 6086 (2006).   Google Scholar

[17]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling and S. Y. Emelianov, Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,, Optics Express, 16 (2008), 3362.  doi: 10.1364/OE.16.003362.  Google Scholar

[18]

Sethuraman, S. Mallidi, S. R. Aglyamov, J. H. Amirian, S. Litovsky, R. W. Smalling and S. Y. Emelianov, Intravascular photoacoustic imaging of atherosclerotic plaques: ex vivo study using a rabbit model of atherosclerosis,, Photon Plus Ultrasound: Imaging and Sensing 2007, 66437 (2007).   Google Scholar

[19]

V. S. Vladimirov, Equations of Mathematical Physics,, (Translated from the Russian by Audrey Littlewood. Edited by Alan Jeffrey.) Pure and Applied Mathematics, 3 (1971).   Google Scholar

[20]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling and S. Emelianov, Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,, Optics Express, 18 (2010), 4889.  doi: 10.1364/OE.18.004889.  Google Scholar

[21]

Y. Xu, L.-H. Wang, G. Ambartsoumian and P. Kuchment, Limited view thermoacoustic tomography,, Photoacoustic imaging and spectroscopy, (2009), 61.  doi: 10.1201/9781420059922.ch6.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, National Bureau of Standards Applied Mathematics Series, (1964).  doi: 10.1119/1.1972842.  Google Scholar

[2]

G. Ambartsoumian, R. Gouia-Zarrad and M. Lewis, Inversion of the circular Radon transform on an annulus,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105015.  Google Scholar

[3]

G. Ambartsoumian and P. Kuchment, A range description for the planar circular Radon transform,, SIAM J. Math. Anal., 38 (2006), 681.  doi: 10.1137/050637492.  Google Scholar

[4]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier and G. Paltauf, Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,, Inverse Problems, 23 (2007).  doi: 10.1088/0266-5611/23/6/S06.  Google Scholar

[5]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, Society for Industrial and Applied Mathematics (SIAM), (2009).  doi: 10.1137/1.9780898719291.  Google Scholar

[6]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1992).   Google Scholar

[7]

S. Emelianov, B. Wang, J. Su, A. Karpiouk, E. Yantsen, K. Sokolov, J. Amirian, R. Smalling and S. Sethuraman, Intravascular ultrasound and photoacoustic imaging,, Proceedings of the 30-th Annual International IEEE EMBS Conference, (2008), 2.  doi: 10.1109/IEMBS.2008.4649075.  Google Scholar

[8]

D. Finch and Rakesh, The spherical mean value operator with centers on a sphere,, Inverse Problems, 23 (2007).  doi: 10.1088/0266-5611/23/6/S04.  Google Scholar

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster and G. Paltauf, Thermoacoustic tomography and the circular Radon transform: Exact inversion formula,, Mathematical Models and Methods in Applied Sciences, 17 (2007), 635.  doi: 10.1142/S0218202507002054.  Google Scholar

[10]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.  doi: 10.1017/S0956792508007353.  Google Scholar

[11]

L. Kunyansky, Inversion of the 3D exponential parallel-beam transform and the Radon transform with angle-dependent attenuation,, Inverse Problems 20 (2004), 20 (2004), 1455.  doi: 10.1088/0266-5611/20/5/008.  Google Scholar

[12]

L. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries,, Inverse Problems and Imaging, 6 (2012), 111.  doi: 10.3934/ipi.2012.6.111.  Google Scholar

[13]

A. Louis and E. T. Quinto, Local tomographic methods in Sonar,, in Surveys on solution methods for inverse problems, (2000), 147.   Google Scholar

[14]

L. V. Nguyen, On singularities and instability of reconstruction in thermoacoustic tomography,, in Tomography and inverse transport theory, 559 (2011), 163.  doi: 10.1090/conm/559/11078.  Google Scholar

[15]

S. J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution,, J. Acoust. Soc. Am., 67 (1980), 1266.  doi: 10.1121/1.384168.  Google Scholar

[16]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling and S. Y. Emelianov, Development of a combined intravascular ultrasound and photoacoustic imaging system,, Photon Plus Ultrasound: Imaging and Sensing 2006, 6086 (2006).   Google Scholar

[17]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling and S. Y. Emelianov, Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,, Optics Express, 16 (2008), 3362.  doi: 10.1364/OE.16.003362.  Google Scholar

[18]

Sethuraman, S. Mallidi, S. R. Aglyamov, J. H. Amirian, S. Litovsky, R. W. Smalling and S. Y. Emelianov, Intravascular photoacoustic imaging of atherosclerotic plaques: ex vivo study using a rabbit model of atherosclerosis,, Photon Plus Ultrasound: Imaging and Sensing 2007, 66437 (2007).   Google Scholar

[19]

V. S. Vladimirov, Equations of Mathematical Physics,, (Translated from the Russian by Audrey Littlewood. Edited by Alan Jeffrey.) Pure and Applied Mathematics, 3 (1971).   Google Scholar

[20]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling and S. Emelianov, Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,, Optics Express, 18 (2010), 4889.  doi: 10.1364/OE.18.004889.  Google Scholar

[21]

Y. Xu, L.-H. Wang, G. Ambartsoumian and P. Kuchment, Limited view thermoacoustic tomography,, Photoacoustic imaging and spectroscopy, (2009), 61.  doi: 10.1201/9781420059922.ch6.  Google Scholar

[1]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[2]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[3]

Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems & Imaging, 2014, 8 (3) : 811-829. doi: 10.3934/ipi.2014.8.811

[4]

Lee Patrolia. Quantitative photoacoustic tomography with variable index of refraction. Inverse Problems & Imaging, 2013, 7 (1) : 253-265. doi: 10.3934/ipi.2013.7.253

[5]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[6]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems & Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[7]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[8]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[9]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[10]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[11]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[12]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[13]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[14]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[15]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[16]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[17]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[18]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[19]

Kazuhiro Ishige. On the existence of solutions of the Cauchy problem for porous medium equations with radon measure as initial data. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 521-546. doi: 10.3934/dcds.1995.1.521

[20]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]