May  2014, 8(2): 339-359. doi: 10.3934/ipi.2014.8.339

Exterior/interior problem for the circular means transform with applications to intravascular imaging

1. 

Department of Mathematics, University of Texas, Arlington, TX 76019, United States

2. 

Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ 85721

Received  August 2013 Revised  December 2013 Published  May 2014

Exterior inverse problem for the circular means transform (CMT) arises in the intravascular photoacoustic imaging (IVPA), in the intravascular ultrasound imaging (IVUS), as well as in radar and sonar. The reduction of the IPVA to the CMT is quite straightforward. As shown in the paper, in IVUS the circular means can be recovered from measurements by solving a certain Volterra integral equation. Thus, a tomography reconstruction in both modalities requires solving the exterior problem for the CMT.
    Numerical solution of this problem usually is not attempted due to the presence of "invisible" wavefronts, which results in severe instability of the reconstruction. The novel inversion algorithm proposed in this paper yields a stable partial reconstruction: it reproduces the "visible" part of the image and blurs the "invisible" part. If the image contains little or no invisible wavefronts (as frequently happens in the IVPA and IVUS) the reconstruction is quantitatively accurate. The presented numerical simulations demonstrate the feasibility of tomography-like reconstruction in these modalities.
Citation: Gaik Ambartsoumian, Leonid Kunyansky. Exterior/interior problem for the circular means transform with applications to intravascular imaging. Inverse Problems & Imaging, 2014, 8 (2) : 339-359. doi: 10.3934/ipi.2014.8.339
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, National Bureau of Standards Applied Mathematics Series, (1964).  doi: 10.1119/1.1972842.  Google Scholar

[2]

G. Ambartsoumian, R. Gouia-Zarrad and M. Lewis, Inversion of the circular Radon transform on an annulus,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105015.  Google Scholar

[3]

G. Ambartsoumian and P. Kuchment, A range description for the planar circular Radon transform,, SIAM J. Math. Anal., 38 (2006), 681.  doi: 10.1137/050637492.  Google Scholar

[4]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier and G. Paltauf, Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,, Inverse Problems, 23 (2007).  doi: 10.1088/0266-5611/23/6/S06.  Google Scholar

[5]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, Society for Industrial and Applied Mathematics (SIAM), (2009).  doi: 10.1137/1.9780898719291.  Google Scholar

[6]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1992).   Google Scholar

[7]

S. Emelianov, B. Wang, J. Su, A. Karpiouk, E. Yantsen, K. Sokolov, J. Amirian, R. Smalling and S. Sethuraman, Intravascular ultrasound and photoacoustic imaging,, Proceedings of the 30-th Annual International IEEE EMBS Conference, (2008), 2.  doi: 10.1109/IEMBS.2008.4649075.  Google Scholar

[8]

D. Finch and Rakesh, The spherical mean value operator with centers on a sphere,, Inverse Problems, 23 (2007).  doi: 10.1088/0266-5611/23/6/S04.  Google Scholar

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster and G. Paltauf, Thermoacoustic tomography and the circular Radon transform: Exact inversion formula,, Mathematical Models and Methods in Applied Sciences, 17 (2007), 635.  doi: 10.1142/S0218202507002054.  Google Scholar

[10]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.  doi: 10.1017/S0956792508007353.  Google Scholar

[11]

L. Kunyansky, Inversion of the 3D exponential parallel-beam transform and the Radon transform with angle-dependent attenuation,, Inverse Problems 20 (2004), 20 (2004), 1455.  doi: 10.1088/0266-5611/20/5/008.  Google Scholar

[12]

L. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries,, Inverse Problems and Imaging, 6 (2012), 111.  doi: 10.3934/ipi.2012.6.111.  Google Scholar

[13]

A. Louis and E. T. Quinto, Local tomographic methods in Sonar,, in Surveys on solution methods for inverse problems, (2000), 147.   Google Scholar

[14]

L. V. Nguyen, On singularities and instability of reconstruction in thermoacoustic tomography,, in Tomography and inverse transport theory, 559 (2011), 163.  doi: 10.1090/conm/559/11078.  Google Scholar

[15]

S. J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution,, J. Acoust. Soc. Am., 67 (1980), 1266.  doi: 10.1121/1.384168.  Google Scholar

[16]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling and S. Y. Emelianov, Development of a combined intravascular ultrasound and photoacoustic imaging system,, Photon Plus Ultrasound: Imaging and Sensing 2006, 6086 (2006).   Google Scholar

[17]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling and S. Y. Emelianov, Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,, Optics Express, 16 (2008), 3362.  doi: 10.1364/OE.16.003362.  Google Scholar

[18]

Sethuraman, S. Mallidi, S. R. Aglyamov, J. H. Amirian, S. Litovsky, R. W. Smalling and S. Y. Emelianov, Intravascular photoacoustic imaging of atherosclerotic plaques: ex vivo study using a rabbit model of atherosclerosis,, Photon Plus Ultrasound: Imaging and Sensing 2007, 66437 (2007).   Google Scholar

[19]

V. S. Vladimirov, Equations of Mathematical Physics,, (Translated from the Russian by Audrey Littlewood. Edited by Alan Jeffrey.) Pure and Applied Mathematics, 3 (1971).   Google Scholar

[20]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling and S. Emelianov, Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,, Optics Express, 18 (2010), 4889.  doi: 10.1364/OE.18.004889.  Google Scholar

[21]

Y. Xu, L.-H. Wang, G. Ambartsoumian and P. Kuchment, Limited view thermoacoustic tomography,, Photoacoustic imaging and spectroscopy, (2009), 61.  doi: 10.1201/9781420059922.ch6.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, National Bureau of Standards Applied Mathematics Series, (1964).  doi: 10.1119/1.1972842.  Google Scholar

[2]

G. Ambartsoumian, R. Gouia-Zarrad and M. Lewis, Inversion of the circular Radon transform on an annulus,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105015.  Google Scholar

[3]

G. Ambartsoumian and P. Kuchment, A range description for the planar circular Radon transform,, SIAM J. Math. Anal., 38 (2006), 681.  doi: 10.1137/050637492.  Google Scholar

[4]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier and G. Paltauf, Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,, Inverse Problems, 23 (2007).  doi: 10.1088/0266-5611/23/6/S06.  Google Scholar

[5]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, Society for Industrial and Applied Mathematics (SIAM), (2009).  doi: 10.1137/1.9780898719291.  Google Scholar

[6]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1992).   Google Scholar

[7]

S. Emelianov, B. Wang, J. Su, A. Karpiouk, E. Yantsen, K. Sokolov, J. Amirian, R. Smalling and S. Sethuraman, Intravascular ultrasound and photoacoustic imaging,, Proceedings of the 30-th Annual International IEEE EMBS Conference, (2008), 2.  doi: 10.1109/IEMBS.2008.4649075.  Google Scholar

[8]

D. Finch and Rakesh, The spherical mean value operator with centers on a sphere,, Inverse Problems, 23 (2007).  doi: 10.1088/0266-5611/23/6/S04.  Google Scholar

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster and G. Paltauf, Thermoacoustic tomography and the circular Radon transform: Exact inversion formula,, Mathematical Models and Methods in Applied Sciences, 17 (2007), 635.  doi: 10.1142/S0218202507002054.  Google Scholar

[10]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.  doi: 10.1017/S0956792508007353.  Google Scholar

[11]

L. Kunyansky, Inversion of the 3D exponential parallel-beam transform and the Radon transform with angle-dependent attenuation,, Inverse Problems 20 (2004), 20 (2004), 1455.  doi: 10.1088/0266-5611/20/5/008.  Google Scholar

[12]

L. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries,, Inverse Problems and Imaging, 6 (2012), 111.  doi: 10.3934/ipi.2012.6.111.  Google Scholar

[13]

A. Louis and E. T. Quinto, Local tomographic methods in Sonar,, in Surveys on solution methods for inverse problems, (2000), 147.   Google Scholar

[14]

L. V. Nguyen, On singularities and instability of reconstruction in thermoacoustic tomography,, in Tomography and inverse transport theory, 559 (2011), 163.  doi: 10.1090/conm/559/11078.  Google Scholar

[15]

S. J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution,, J. Acoust. Soc. Am., 67 (1980), 1266.  doi: 10.1121/1.384168.  Google Scholar

[16]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling and S. Y. Emelianov, Development of a combined intravascular ultrasound and photoacoustic imaging system,, Photon Plus Ultrasound: Imaging and Sensing 2006, 6086 (2006).   Google Scholar

[17]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling and S. Y. Emelianov, Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,, Optics Express, 16 (2008), 3362.  doi: 10.1364/OE.16.003362.  Google Scholar

[18]

Sethuraman, S. Mallidi, S. R. Aglyamov, J. H. Amirian, S. Litovsky, R. W. Smalling and S. Y. Emelianov, Intravascular photoacoustic imaging of atherosclerotic plaques: ex vivo study using a rabbit model of atherosclerosis,, Photon Plus Ultrasound: Imaging and Sensing 2007, 66437 (2007).   Google Scholar

[19]

V. S. Vladimirov, Equations of Mathematical Physics,, (Translated from the Russian by Audrey Littlewood. Edited by Alan Jeffrey.) Pure and Applied Mathematics, 3 (1971).   Google Scholar

[20]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling and S. Emelianov, Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,, Optics Express, 18 (2010), 4889.  doi: 10.1364/OE.18.004889.  Google Scholar

[21]

Y. Xu, L.-H. Wang, G. Ambartsoumian and P. Kuchment, Limited view thermoacoustic tomography,, Photoacoustic imaging and spectroscopy, (2009), 61.  doi: 10.1201/9781420059922.ch6.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[13]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]