May  2014, 8(2): 507-535. doi: 10.3934/ipi.2014.8.507

A stable method solving the total variation dictionary model with $L^\infty$ constraints

1. 

Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China

2. 

MAP5, Université Paris Descartes, Paris, 75006, France

3. 

School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

4. 

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China

Received  November 2011 Revised  May 2013 Published  May 2014

Image restoration plays an important role in image processing, and numerous approaches have been proposed to tackle this problem. This paper presents a modified model for image restoration, that is based on a combination of Total Variation and Dictionary approaches. Since the well-known TV regularization is non-differentiable, the proposed method utilizes its dual formulation instead of its approximation in order to exactly preserve its properties. The data-fidelity term combines the one commonly used in image restoration and a wavelet thresholding based term. Then, the resulting optimization problem is solved via a first-order primal-dual algorithm. Numerical experiments demonstrate the good performance of the proposed model. In a last variant, we replace the classical TV by the nonlocal TV regularization, which results in a much higher quality of restoration.
Citation: Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems & Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507
References:
[1]

IEEE Trans. Image Process., 19 (2010), 2345-2356. doi: 10.1109/TIP.2010.2047910.  Google Scholar

[2]

Oxford, U.K.: Oxford Univ. Press 2000.  Google Scholar

[3]

Applied Mathematical Sciences, 147. Springer, New York, 2006.  Google Scholar

[4]

SIAM J. Imag. Sci., 2 (2009), 183-202. doi: 10.1137/080716542.  Google Scholar

[5]

in Proc. SIGGRAPH, New York, (2000), 417-424. doi: 10.1145/344779.344972.  Google Scholar

[6]

Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[7]

Lecture Notes in Statistics, 37 (1986), 28-47. doi: 10.1007/978-1-4613-9940-7_3.  Google Scholar

[8]

Technical Report, 2009. Google Scholar

[9]

Inverse Problems and Imaging, 2 (2008), 455-484. doi: 10.3934/ipi.2008.2.455.  Google Scholar

[10]

Multiscale Model. Simul., 4 (2005), 490-530. doi: 10.1137/040616024.  Google Scholar

[11]

IEEE Trans. Image Process., 19 (2010), 2634-2645. doi: 10.1109/TIP.2010.2049240.  Google Scholar

[12]

Signal Processing, 82 (2002), 1519-1543. Google Scholar

[13]

J. Math. Imag. Vis., 20 (2004), 89-97. doi: 10.1023/B:JMIV.0000011321.19549.88.  Google Scholar

[14]

IEEE Trans. Image Process., 7 (1998), 319-335. doi: 10.1109/83.661182.  Google Scholar

[15]

J. Math. Imaging Vis., 40 (2011), 120-145. doi: 10.1007/s10851-010-0251-1.  Google Scholar

[16]

SIAM J. Sci. Comp., 20 (1999), 1964-1977. doi: 10.1137/S1064827596299767.  Google Scholar

[17]

Int. J. of Imaging Systems and Technology, 15 (2005), 92-102. doi: 10.1002/ima.20041.  Google Scholar

[18]

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. doi: 10.1137/1.9780898717877.  Google Scholar

[19]

SIAM J. Imag. Sci., 2 (2009), 730-762. doi: 10.1137/080727749.  Google Scholar

[20]

Multiscale Model. Simul., 4 (2005), 1168-1200. doi: 10.1137/050626090.  Google Scholar

[21]

SIAM Publ., Philadelphia, 1992. doi: 10.1137/1.9781611970104.  Google Scholar

[22]

Commun.Pure Appl. Math., 57 (2004), 1413-1457. doi: 10.1002/cpa.20042.  Google Scholar

[23]

Biometrika, 81 (1994), 425-455. doi: 10.1093/biomet/81.3.425.  Google Scholar

[24]

J. Amer. Statist. Assoc., 90 (1995), 1200-1224. doi: 10.1080/01621459.1995.10476626.  Google Scholar

[25]

Studies Math. Appl., American Elsevier, Amsterdam, New York, 1976.  Google Scholar

[26]

in Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam, 1983, 299-331. Google Scholar

[27]

Multiscale Model. Simul., 7 (2008), 1005-1028. doi: 10.1137/070698592.  Google Scholar

[28]

SIAM J. Imag. Sci., 2 (2009), 323-343. doi: 10.1137/080725891.  Google Scholar

[29]

Inverse. Probl., 20 (2004), 815-831. doi: 10.1088/0266-5611/20/3/010.  Google Scholar

[30]

IEEE Trans. on Image Process, 22 (2013), 1108-1120. doi: 10.1109/TIP.2012.2227766.  Google Scholar

[31]

Appl. and Comp. Harmonic Analysis, 12 (2002), 309-331. doi: 10.1006/acha.2002.0379.  Google Scholar

[32]

Journal of Information Processes, 2 (2002), 1-10. Google Scholar

[33]

IEEE Trans. on Image Process, 11 (2002), 1450-1456. doi: 10.1109/TIP.2002.806241.  Google Scholar

[34]

Int. Conf. on Image Processing, 3 (1998), 259-263. doi: 10.1109/ICIP.1998.999016.  Google Scholar

[35]

Inverse Probl., 27 (2011), 45009-45038. doi: 10.1088/0266-5611/27/4/045009.  Google Scholar

[36]

C.R. Acad. Sci. Paris Ser. A Math, 255 (1962), 2897-2899.  Google Scholar

[37]

Bull. Soc. Math. France, 93 (1965), 273-299.  Google Scholar

[38]

Dokl. Akad. Nauk SSSR, 269 (1983), 543-547.  Google Scholar

[39]

SIAM J. Sci. Comp., 33 (2011), 1643-1668. doi: 10.1137/100807697.  Google Scholar

[40]

Inverse Problems and Imaging, 5 (2011), 511-530. doi: 10.3934/ipi.2011.5.511.  Google Scholar

[41]

Physica D, 60 (1992), 259-268. Google Scholar

[42]

Int. J. Comput. Vis., 92 (2011), 265-280. doi: 10.1007/s11263-010-0357-3.  Google Scholar

[43]

SIAM J. Numer. Anal., 42 (2004), 686-713. doi: 10.1137/S0036142903422429.  Google Scholar

[44]

SSVM 2009, LNCS 5567, Springer, 42 (2009), 502-513. Google Scholar

[45]

Winston and Sons, Washington, DC, 1977.  Google Scholar

[46]

Inverse Problems and Imaging, 5 (2011), 237-261. doi: 10.3934/ipi.2011.5.237.  Google Scholar

[47]

Singapore: World Scientific, 2002. doi: 10.1142/9789812777096.  Google Scholar

[48]

Int. Conf. on Image Processing, (2008), 577-580. doi: 10.1109/ICIP.2008.4711820.  Google Scholar

[49]

Int. Conf. on Acoust. Speech and Signal Proc., (2006), 865-868. Google Scholar

[50]

IEEE trans. on Image Process., 19 (2010), 821-825. doi: 10.1109/TIP.2009.2034701.  Google Scholar

[51]

SIAM J. Imag. Sci., 3 (2010), 253-276. doi: 10.1137/090746379.  Google Scholar

[52]

UCLA CAM Report 08-34 (2008). Google Scholar

show all references

References:
[1]

IEEE Trans. Image Process., 19 (2010), 2345-2356. doi: 10.1109/TIP.2010.2047910.  Google Scholar

[2]

Oxford, U.K.: Oxford Univ. Press 2000.  Google Scholar

[3]

Applied Mathematical Sciences, 147. Springer, New York, 2006.  Google Scholar

[4]

SIAM J. Imag. Sci., 2 (2009), 183-202. doi: 10.1137/080716542.  Google Scholar

[5]

in Proc. SIGGRAPH, New York, (2000), 417-424. doi: 10.1145/344779.344972.  Google Scholar

[6]

Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[7]

Lecture Notes in Statistics, 37 (1986), 28-47. doi: 10.1007/978-1-4613-9940-7_3.  Google Scholar

[8]

Technical Report, 2009. Google Scholar

[9]

Inverse Problems and Imaging, 2 (2008), 455-484. doi: 10.3934/ipi.2008.2.455.  Google Scholar

[10]

Multiscale Model. Simul., 4 (2005), 490-530. doi: 10.1137/040616024.  Google Scholar

[11]

IEEE Trans. Image Process., 19 (2010), 2634-2645. doi: 10.1109/TIP.2010.2049240.  Google Scholar

[12]

Signal Processing, 82 (2002), 1519-1543. Google Scholar

[13]

J. Math. Imag. Vis., 20 (2004), 89-97. doi: 10.1023/B:JMIV.0000011321.19549.88.  Google Scholar

[14]

IEEE Trans. Image Process., 7 (1998), 319-335. doi: 10.1109/83.661182.  Google Scholar

[15]

J. Math. Imaging Vis., 40 (2011), 120-145. doi: 10.1007/s10851-010-0251-1.  Google Scholar

[16]

SIAM J. Sci. Comp., 20 (1999), 1964-1977. doi: 10.1137/S1064827596299767.  Google Scholar

[17]

Int. J. of Imaging Systems and Technology, 15 (2005), 92-102. doi: 10.1002/ima.20041.  Google Scholar

[18]

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. doi: 10.1137/1.9780898717877.  Google Scholar

[19]

SIAM J. Imag. Sci., 2 (2009), 730-762. doi: 10.1137/080727749.  Google Scholar

[20]

Multiscale Model. Simul., 4 (2005), 1168-1200. doi: 10.1137/050626090.  Google Scholar

[21]

SIAM Publ., Philadelphia, 1992. doi: 10.1137/1.9781611970104.  Google Scholar

[22]

Commun.Pure Appl. Math., 57 (2004), 1413-1457. doi: 10.1002/cpa.20042.  Google Scholar

[23]

Biometrika, 81 (1994), 425-455. doi: 10.1093/biomet/81.3.425.  Google Scholar

[24]

J. Amer. Statist. Assoc., 90 (1995), 1200-1224. doi: 10.1080/01621459.1995.10476626.  Google Scholar

[25]

Studies Math. Appl., American Elsevier, Amsterdam, New York, 1976.  Google Scholar

[26]

in Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam, 1983, 299-331. Google Scholar

[27]

Multiscale Model. Simul., 7 (2008), 1005-1028. doi: 10.1137/070698592.  Google Scholar

[28]

SIAM J. Imag. Sci., 2 (2009), 323-343. doi: 10.1137/080725891.  Google Scholar

[29]

Inverse. Probl., 20 (2004), 815-831. doi: 10.1088/0266-5611/20/3/010.  Google Scholar

[30]

IEEE Trans. on Image Process, 22 (2013), 1108-1120. doi: 10.1109/TIP.2012.2227766.  Google Scholar

[31]

Appl. and Comp. Harmonic Analysis, 12 (2002), 309-331. doi: 10.1006/acha.2002.0379.  Google Scholar

[32]

Journal of Information Processes, 2 (2002), 1-10. Google Scholar

[33]

IEEE Trans. on Image Process, 11 (2002), 1450-1456. doi: 10.1109/TIP.2002.806241.  Google Scholar

[34]

Int. Conf. on Image Processing, 3 (1998), 259-263. doi: 10.1109/ICIP.1998.999016.  Google Scholar

[35]

Inverse Probl., 27 (2011), 45009-45038. doi: 10.1088/0266-5611/27/4/045009.  Google Scholar

[36]

C.R. Acad. Sci. Paris Ser. A Math, 255 (1962), 2897-2899.  Google Scholar

[37]

Bull. Soc. Math. France, 93 (1965), 273-299.  Google Scholar

[38]

Dokl. Akad. Nauk SSSR, 269 (1983), 543-547.  Google Scholar

[39]

SIAM J. Sci. Comp., 33 (2011), 1643-1668. doi: 10.1137/100807697.  Google Scholar

[40]

Inverse Problems and Imaging, 5 (2011), 511-530. doi: 10.3934/ipi.2011.5.511.  Google Scholar

[41]

Physica D, 60 (1992), 259-268. Google Scholar

[42]

Int. J. Comput. Vis., 92 (2011), 265-280. doi: 10.1007/s11263-010-0357-3.  Google Scholar

[43]

SIAM J. Numer. Anal., 42 (2004), 686-713. doi: 10.1137/S0036142903422429.  Google Scholar

[44]

SSVM 2009, LNCS 5567, Springer, 42 (2009), 502-513. Google Scholar

[45]

Winston and Sons, Washington, DC, 1977.  Google Scholar

[46]

Inverse Problems and Imaging, 5 (2011), 237-261. doi: 10.3934/ipi.2011.5.237.  Google Scholar

[47]

Singapore: World Scientific, 2002. doi: 10.1142/9789812777096.  Google Scholar

[48]

Int. Conf. on Image Processing, (2008), 577-580. doi: 10.1109/ICIP.2008.4711820.  Google Scholar

[49]

Int. Conf. on Acoust. Speech and Signal Proc., (2006), 865-868. Google Scholar

[50]

IEEE trans. on Image Process., 19 (2010), 821-825. doi: 10.1109/TIP.2009.2034701.  Google Scholar

[51]

SIAM J. Imag. Sci., 3 (2010), 253-276. doi: 10.1137/090746379.  Google Scholar

[52]

UCLA CAM Report 08-34 (2008). Google Scholar

[1]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[2]

Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021003

[3]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[4]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[5]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[6]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[7]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[8]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[9]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[10]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[11]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[12]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[13]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[14]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[15]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[16]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

[17]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[18]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[19]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003

[20]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]