-
Previous Article
Kozlov-Maz'ya iteration as a form of Landweber iteration
- IPI Home
- This Issue
-
Next Article
A new computer-aided method for detecting brain metastases on contrast-enhanced MR images
A stable method solving the total variation dictionary model with $L^\infty$ constraints
1. | Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China |
2. | MAP5, Université Paris Descartes, Paris, 75006, France |
3. | School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China |
4. | Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China |
References:
[1] |
IEEE Trans. Image Process., 19 (2010), 2345-2356.
doi: 10.1109/TIP.2010.2047910. |
[2] |
Oxford, U.K.: Oxford Univ. Press 2000. |
[3] |
Applied Mathematical Sciences, 147. Springer, New York, 2006. |
[4] |
SIAM J. Imag. Sci., 2 (2009), 183-202.
doi: 10.1137/080716542. |
[5] |
in Proc. SIGGRAPH, New York, (2000), 417-424.
doi: 10.1145/344779.344972. |
[6] |
Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441. |
[7] |
Lecture Notes in Statistics, 37 (1986), 28-47.
doi: 10.1007/978-1-4613-9940-7_3. |
[8] |
Technical Report, 2009. Google Scholar |
[9] |
Inverse Problems and Imaging, 2 (2008), 455-484.
doi: 10.3934/ipi.2008.2.455. |
[10] |
Multiscale Model. Simul., 4 (2005), 490-530.
doi: 10.1137/040616024. |
[11] |
IEEE Trans. Image Process., 19 (2010), 2634-2645.
doi: 10.1109/TIP.2010.2049240. |
[12] |
Signal Processing, 82 (2002), 1519-1543. Google Scholar |
[13] |
J. Math. Imag. Vis., 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011321.19549.88. |
[14] |
IEEE Trans. Image Process., 7 (1998), 319-335.
doi: 10.1109/83.661182. |
[15] |
J. Math. Imaging Vis., 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1. |
[16] |
SIAM J. Sci. Comp., 20 (1999), 1964-1977.
doi: 10.1137/S1064827596299767. |
[17] |
Int. J. of Imaging Systems and Technology, 15 (2005), 92-102.
doi: 10.1002/ima.20041. |
[18] |
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
doi: 10.1137/1.9780898717877. |
[19] |
SIAM J. Imag. Sci., 2 (2009), 730-762.
doi: 10.1137/080727749. |
[20] |
Multiscale Model. Simul., 4 (2005), 1168-1200.
doi: 10.1137/050626090. |
[21] |
SIAM Publ., Philadelphia, 1992.
doi: 10.1137/1.9781611970104. |
[22] |
Commun.Pure Appl. Math., 57 (2004), 1413-1457.
doi: 10.1002/cpa.20042. |
[23] |
Biometrika, 81 (1994), 425-455.
doi: 10.1093/biomet/81.3.425. |
[24] |
J. Amer. Statist. Assoc., 90 (1995), 1200-1224.
doi: 10.1080/01621459.1995.10476626. |
[25] |
Studies Math. Appl., American Elsevier, Amsterdam, New York, 1976. |
[26] |
in Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam, 1983, 299-331. Google Scholar |
[27] |
Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592. |
[28] |
SIAM J. Imag. Sci., 2 (2009), 323-343.
doi: 10.1137/080725891. |
[29] |
Inverse. Probl., 20 (2004), 815-831.
doi: 10.1088/0266-5611/20/3/010. |
[30] |
IEEE Trans. on Image Process, 22 (2013), 1108-1120.
doi: 10.1109/TIP.2012.2227766. |
[31] |
Appl. and Comp. Harmonic Analysis, 12 (2002), 309-331.
doi: 10.1006/acha.2002.0379. |
[32] |
Journal of Information Processes, 2 (2002), 1-10. Google Scholar |
[33] |
IEEE Trans. on Image Process, 11 (2002), 1450-1456.
doi: 10.1109/TIP.2002.806241. |
[34] |
Int. Conf. on Image Processing, 3 (1998), 259-263.
doi: 10.1109/ICIP.1998.999016. |
[35] |
Inverse Probl., 27 (2011), 45009-45038.
doi: 10.1088/0266-5611/27/4/045009. |
[36] |
C.R. Acad. Sci. Paris Ser. A Math, 255 (1962), 2897-2899. |
[37] |
Bull. Soc. Math. France, 93 (1965), 273-299. |
[38] |
Dokl. Akad. Nauk SSSR, 269 (1983), 543-547. |
[39] |
SIAM J. Sci. Comp., 33 (2011), 1643-1668.
doi: 10.1137/100807697. |
[40] |
Inverse Problems and Imaging, 5 (2011), 511-530.
doi: 10.3934/ipi.2011.5.511. |
[41] |
Physica D, 60 (1992), 259-268. Google Scholar |
[42] |
Int. J. Comput. Vis., 92 (2011), 265-280.
doi: 10.1007/s11263-010-0357-3. |
[43] |
SIAM J. Numer. Anal., 42 (2004), 686-713.
doi: 10.1137/S0036142903422429. |
[44] |
SSVM 2009, LNCS 5567, Springer, 42 (2009), 502-513. Google Scholar |
[45] |
Winston and Sons, Washington, DC, 1977. |
[46] |
Inverse Problems and Imaging, 5 (2011), 237-261.
doi: 10.3934/ipi.2011.5.237. |
[47] |
Singapore: World Scientific, 2002.
doi: 10.1142/9789812777096. |
[48] |
Int. Conf. on Image Processing, (2008), 577-580.
doi: 10.1109/ICIP.2008.4711820. |
[49] |
Int. Conf. on Acoust. Speech and Signal Proc., (2006), 865-868. Google Scholar |
[50] |
IEEE trans. on Image Process., 19 (2010), 821-825.
doi: 10.1109/TIP.2009.2034701. |
[51] |
SIAM J. Imag. Sci., 3 (2010), 253-276.
doi: 10.1137/090746379. |
[52] |
UCLA CAM Report 08-34 (2008). Google Scholar |
show all references
References:
[1] |
IEEE Trans. Image Process., 19 (2010), 2345-2356.
doi: 10.1109/TIP.2010.2047910. |
[2] |
Oxford, U.K.: Oxford Univ. Press 2000. |
[3] |
Applied Mathematical Sciences, 147. Springer, New York, 2006. |
[4] |
SIAM J. Imag. Sci., 2 (2009), 183-202.
doi: 10.1137/080716542. |
[5] |
in Proc. SIGGRAPH, New York, (2000), 417-424.
doi: 10.1145/344779.344972. |
[6] |
Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441. |
[7] |
Lecture Notes in Statistics, 37 (1986), 28-47.
doi: 10.1007/978-1-4613-9940-7_3. |
[8] |
Technical Report, 2009. Google Scholar |
[9] |
Inverse Problems and Imaging, 2 (2008), 455-484.
doi: 10.3934/ipi.2008.2.455. |
[10] |
Multiscale Model. Simul., 4 (2005), 490-530.
doi: 10.1137/040616024. |
[11] |
IEEE Trans. Image Process., 19 (2010), 2634-2645.
doi: 10.1109/TIP.2010.2049240. |
[12] |
Signal Processing, 82 (2002), 1519-1543. Google Scholar |
[13] |
J. Math. Imag. Vis., 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011321.19549.88. |
[14] |
IEEE Trans. Image Process., 7 (1998), 319-335.
doi: 10.1109/83.661182. |
[15] |
J. Math. Imaging Vis., 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1. |
[16] |
SIAM J. Sci. Comp., 20 (1999), 1964-1977.
doi: 10.1137/S1064827596299767. |
[17] |
Int. J. of Imaging Systems and Technology, 15 (2005), 92-102.
doi: 10.1002/ima.20041. |
[18] |
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
doi: 10.1137/1.9780898717877. |
[19] |
SIAM J. Imag. Sci., 2 (2009), 730-762.
doi: 10.1137/080727749. |
[20] |
Multiscale Model. Simul., 4 (2005), 1168-1200.
doi: 10.1137/050626090. |
[21] |
SIAM Publ., Philadelphia, 1992.
doi: 10.1137/1.9781611970104. |
[22] |
Commun.Pure Appl. Math., 57 (2004), 1413-1457.
doi: 10.1002/cpa.20042. |
[23] |
Biometrika, 81 (1994), 425-455.
doi: 10.1093/biomet/81.3.425. |
[24] |
J. Amer. Statist. Assoc., 90 (1995), 1200-1224.
doi: 10.1080/01621459.1995.10476626. |
[25] |
Studies Math. Appl., American Elsevier, Amsterdam, New York, 1976. |
[26] |
in Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam, 1983, 299-331. Google Scholar |
[27] |
Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592. |
[28] |
SIAM J. Imag. Sci., 2 (2009), 323-343.
doi: 10.1137/080725891. |
[29] |
Inverse. Probl., 20 (2004), 815-831.
doi: 10.1088/0266-5611/20/3/010. |
[30] |
IEEE Trans. on Image Process, 22 (2013), 1108-1120.
doi: 10.1109/TIP.2012.2227766. |
[31] |
Appl. and Comp. Harmonic Analysis, 12 (2002), 309-331.
doi: 10.1006/acha.2002.0379. |
[32] |
Journal of Information Processes, 2 (2002), 1-10. Google Scholar |
[33] |
IEEE Trans. on Image Process, 11 (2002), 1450-1456.
doi: 10.1109/TIP.2002.806241. |
[34] |
Int. Conf. on Image Processing, 3 (1998), 259-263.
doi: 10.1109/ICIP.1998.999016. |
[35] |
Inverse Probl., 27 (2011), 45009-45038.
doi: 10.1088/0266-5611/27/4/045009. |
[36] |
C.R. Acad. Sci. Paris Ser. A Math, 255 (1962), 2897-2899. |
[37] |
Bull. Soc. Math. France, 93 (1965), 273-299. |
[38] |
Dokl. Akad. Nauk SSSR, 269 (1983), 543-547. |
[39] |
SIAM J. Sci. Comp., 33 (2011), 1643-1668.
doi: 10.1137/100807697. |
[40] |
Inverse Problems and Imaging, 5 (2011), 511-530.
doi: 10.3934/ipi.2011.5.511. |
[41] |
Physica D, 60 (1992), 259-268. Google Scholar |
[42] |
Int. J. Comput. Vis., 92 (2011), 265-280.
doi: 10.1007/s11263-010-0357-3. |
[43] |
SIAM J. Numer. Anal., 42 (2004), 686-713.
doi: 10.1137/S0036142903422429. |
[44] |
SSVM 2009, LNCS 5567, Springer, 42 (2009), 502-513. Google Scholar |
[45] |
Winston and Sons, Washington, DC, 1977. |
[46] |
Inverse Problems and Imaging, 5 (2011), 237-261.
doi: 10.3934/ipi.2011.5.237. |
[47] |
Singapore: World Scientific, 2002.
doi: 10.1142/9789812777096. |
[48] |
Int. Conf. on Image Processing, (2008), 577-580.
doi: 10.1109/ICIP.2008.4711820. |
[49] |
Int. Conf. on Acoust. Speech and Signal Proc., (2006), 865-868. Google Scholar |
[50] |
IEEE trans. on Image Process., 19 (2010), 821-825.
doi: 10.1109/TIP.2009.2034701. |
[51] |
SIAM J. Imag. Sci., 3 (2010), 253-276.
doi: 10.1137/090746379. |
[52] |
UCLA CAM Report 08-34 (2008). Google Scholar |
[1] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[2] |
Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021003 |
[3] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[4] |
Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021084 |
[5] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[6] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[7] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[8] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[9] |
Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037 |
[10] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[11] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[12] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[13] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[14] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[15] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[16] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385 |
[17] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[18] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[19] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003 |
[20] |
José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]