\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements

Abstract Related Papers Cited by
  • In this paper we consider the problem of determining an unknown pair $\lambda$, $\mu$ of piecewise constant Lamé parameters inside a three dimensional body from the Dirichlet to Neumann map. We prove uniqueness and Lipschitz continuous dependence of $\lambda$ and $\mu$ from the Dirichlet to Neumann map.
    Mathematics Subject Classification: Primary: 35R30, 35J57; Secondary: 35R05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Akamatsu, G. Nakamura and S. Steinberg, Identification of Lamé coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354.doi: 10.1088/0266-5611/7/3/003.

    [2]

    G. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, 27 (1988), 153-172.doi: 10.1080/00036818808839730.

    [3]

    G. Alessandrini, E. Beretta and S. Vessella, Determining cracks by boundary measurements-Lipschitz Stability, SIAM J. Math. Anal., 27 (1996), 361-375.doi: 10.1137/S0036141094265791.

    [4]

    G. Alessandrini, M. Di Cristo, A. Morassi and E. Rosset, Stable determination of an inclusion in an elastic body by boundary measurements, SIAM J. Math. Anal., 46 (2014), 2692-2729.doi: 10.1137/130946307.

    [5]

    G. Alessandrini and A. Morassi, Strong unique continuation for the Lamé system of elasticity, Comm. PDE, 26 (2001), 1787-1810.doi: 10.1081/PDE-100107459.

    [6]

    G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 1-47.doi: 10.1088/0266-5611/25/12/123004.

    [7]

    G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math., 35 (2005), 207-241.doi: 10.1016/j.aam.2004.12.002.

    [8]

    H. Ammari, E. Beretta and E. Francini, Reconstruction of thin conducting inhomogeneities from electrostatic measurements, II. The case of multiple segments, Applicable Analysis, 85 (2006), 87-105.doi: 10.1080/00036810500277736.

    [9]

    K. Astala and L. Paivarinta, Calderón's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299.doi: 10.4007/annals.2006.163.265.

    [10]

    V. Bacchelli and S. Vessella, Lipschitz stability for a stationary 2D inverse problem with unknown polygonal boundary, Inverse Problems, 22 (2006), 1627-1658.doi: 10.1088/0266-5611/22/5/007.

    [11]

    E. Beretta, E. Bonnetier, E. Francini and A. Mazzucato, An asymptotic formula for the displacement field in the presence of small anisotropic elastic inclusions, Inverse Problems and Imaging, 6 (2012), 1-23.doi: 10.3934/ipi.2012.6.1.

    [12]

    E. Beretta, M. V de Hoop and L. Qiu, Lipschitz stability of an inverse boundary value problem for a Schrödinger type equation, SIAM J. Math. Anal., 45 (2013), 679-699.doi: 10.1137/120869201.

    [13]

    E. Beretta and E. Francini, Lipschitz stability for the impedance tomography problem. The complex case, Comm. PDE, 36 (2011), 1723-1749.doi: 10.1080/03605302.2011.552930.

    [14]

    E. Beretta, E. Francini and S. Vessella, Determination of a linear crack in an elastic body from boundary measurements. Lipschitz stability, SIAM J. Math. Anal., 40 (2008), 984-1002.doi: 10.1137/070698397.

    [15]

    M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse problems, 21 (2005), R1-R50.doi: 10.1088/0266-5611/21/2/R01.

    [16]

    B. M. Brown, M. Jais and I. W. Knowles, A variational approach to an elastic inverse problem, Inverse Problems, 21 (2005), 1953-1973.doi: 10.1088/0266-5611/21/6/010.

    [17]

    M. Chipot, D. Kinderlehrer and G. Vergara-Caffarelli, Smoothness of linear laminates, Arch. Rational Mech. Anal., 96 (1986), 81-96.doi: 10.1007/BF00251414.

    [18]

    M. V. de Hoop, L. Qiu and O. Scherzer, Local analysis of inverse problems: Höelder stability and iterative reconstruction, Inverse Problems, 28 (2012), 045001, 16 pp.doi: 10.1088/0266-5611/28/4/045001.

    [19]

    M. V. de Hoop, L. Qiu and O. Scherzer, A convergence analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints, to appear in Numerische Mathematik, arXiv:1206.3706.

    [20]

    G. Eskin and J. Ralston, On the inverse boundary value problem for linear isotropic elasticity, Inverse Problems, 18 (2002), 907-921.doi: 10.1088/0266-5611/18/3/324.

    [21]

    L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.

    [22]

    S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math., 124 (2007), 139-172.doi: 10.1007/s00229-007-0107-1.

    [23]

    M. Ikehata, Inversion formulas for the linearized problem for an inverse boundary value problem in elastic prospection, SIAM J. Appl. Math., 50 (1990), 1635-1644.doi: 10.1137/0150097.

    [24]

    V. Isakov, Inverse Problems for Partial Differential Equations, $2^{nd}$ edition, Springer, 2006.

    [25]

    Y. Y. Li and L. Nirenberg, Estimates for elliptic systems from composite materials, Comm. Pure Appl. Math., 56 (2003), 892-925.doi: 10.1002/cpa.10079.

    [26]

    N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.doi: 10.1088/0266-5611/17/5/313.

    [27]

    G. Milton, The Theory of Composites, Cambridge University Press, 2002.doi: 10.1017/CBO9780511613357.

    [28]

    C. Mengcheng and T. Renji, An explicit tensor expression for the fundamental solutions of a bimaterial space problem, Applied Mathematics and Mechanics, 18 (1997), 331-340.doi: 10.1007/BF02457547.

    [29]

    A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480.doi: 10.1088/0266-5611/20/2/010.

    [30]

    G. Nakamura, Inverse problems for elasticity, in Selected Papers on Analysis and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 211, Amer. Math. Soc., Providence, RI, 2003, 71-85.

    [31]

    G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements, American Journal of Mathematics, 115 (1993), 1161-1187.doi: 10.2307/2375069.

    [32]

    G. Nakamura and G. Uhlmann, Erratum: Global uniqueness for an inverse boundary value problem arising in elasticity, Invent. Math., 118 (1994), 457-474.doi: 10.1007/BF01231541.

    [33]

    G. Nakamura and G. Uhlmann, Inverse boundary problems at the boundary for an elastic system, SIAM J. Math. Anal., 26 (1995), 263-279.doi: 10.1137/S0036141093247494.

    [34]

    L. Rongved, Force interior to one of two joined semi-infinite solids, in Proc. 2nd Midwestern Conf. Solid Mech, Purdue, 1955, 1-13.

    [35]

    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.doi: 10.2307/1971291.

    [36]

    S. Vessella, Locations and strengths of point sources: Stability estimates, Inverse Problems, 8 (1992), 911-917.doi: 10.1088/0266-5611/8/6/008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return