Citation: |
[1] |
M. Akamatsu, G. Nakamura and S. Steinberg, Identification of Lamé coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354.doi: 10.1088/0266-5611/7/3/003. |
[2] |
G. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, 27 (1988), 153-172.doi: 10.1080/00036818808839730. |
[3] |
G. Alessandrini, E. Beretta and S. Vessella, Determining cracks by boundary measurements-Lipschitz Stability, SIAM J. Math. Anal., 27 (1996), 361-375.doi: 10.1137/S0036141094265791. |
[4] |
G. Alessandrini, M. Di Cristo, A. Morassi and E. Rosset, Stable determination of an inclusion in an elastic body by boundary measurements, SIAM J. Math. Anal., 46 (2014), 2692-2729.doi: 10.1137/130946307. |
[5] |
G. Alessandrini and A. Morassi, Strong unique continuation for the Lamé system of elasticity, Comm. PDE, 26 (2001), 1787-1810.doi: 10.1081/PDE-100107459. |
[6] |
G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 1-47.doi: 10.1088/0266-5611/25/12/123004. |
[7] |
G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math., 35 (2005), 207-241.doi: 10.1016/j.aam.2004.12.002. |
[8] |
H. Ammari, E. Beretta and E. Francini, Reconstruction of thin conducting inhomogeneities from electrostatic measurements, II. The case of multiple segments, Applicable Analysis, 85 (2006), 87-105.doi: 10.1080/00036810500277736. |
[9] |
K. Astala and L. Paivarinta, Calderón's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299.doi: 10.4007/annals.2006.163.265. |
[10] |
V. Bacchelli and S. Vessella, Lipschitz stability for a stationary 2D inverse problem with unknown polygonal boundary, Inverse Problems, 22 (2006), 1627-1658.doi: 10.1088/0266-5611/22/5/007. |
[11] |
E. Beretta, E. Bonnetier, E. Francini and A. Mazzucato, An asymptotic formula for the displacement field in the presence of small anisotropic elastic inclusions, Inverse Problems and Imaging, 6 (2012), 1-23.doi: 10.3934/ipi.2012.6.1. |
[12] |
E. Beretta, M. V de Hoop and L. Qiu, Lipschitz stability of an inverse boundary value problem for a Schrödinger type equation, SIAM J. Math. Anal., 45 (2013), 679-699.doi: 10.1137/120869201. |
[13] |
E. Beretta and E. Francini, Lipschitz stability for the impedance tomography problem. The complex case, Comm. PDE, 36 (2011), 1723-1749.doi: 10.1080/03605302.2011.552930. |
[14] |
E. Beretta, E. Francini and S. Vessella, Determination of a linear crack in an elastic body from boundary measurements. Lipschitz stability, SIAM J. Math. Anal., 40 (2008), 984-1002.doi: 10.1137/070698397. |
[15] |
M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse problems, 21 (2005), R1-R50.doi: 10.1088/0266-5611/21/2/R01. |
[16] |
B. M. Brown, M. Jais and I. W. Knowles, A variational approach to an elastic inverse problem, Inverse Problems, 21 (2005), 1953-1973.doi: 10.1088/0266-5611/21/6/010. |
[17] |
M. Chipot, D. Kinderlehrer and G. Vergara-Caffarelli, Smoothness of linear laminates, Arch. Rational Mech. Anal., 96 (1986), 81-96.doi: 10.1007/BF00251414. |
[18] |
M. V. de Hoop, L. Qiu and O. Scherzer, Local analysis of inverse problems: Höelder stability and iterative reconstruction, Inverse Problems, 28 (2012), 045001, 16 pp.doi: 10.1088/0266-5611/28/4/045001. |
[19] |
M. V. de Hoop, L. Qiu and O. Scherzer, A convergence analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints, to appear in Numerische Mathematik, arXiv:1206.3706. |
[20] |
G. Eskin and J. Ralston, On the inverse boundary value problem for linear isotropic elasticity, Inverse Problems, 18 (2002), 907-921.doi: 10.1088/0266-5611/18/3/324. |
[21] |
L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. |
[22] |
S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math., 124 (2007), 139-172.doi: 10.1007/s00229-007-0107-1. |
[23] |
M. Ikehata, Inversion formulas for the linearized problem for an inverse boundary value problem in elastic prospection, SIAM J. Appl. Math., 50 (1990), 1635-1644.doi: 10.1137/0150097. |
[24] |
V. Isakov, Inverse Problems for Partial Differential Equations, $2^{nd}$ edition, Springer, 2006. |
[25] |
Y. Y. Li and L. Nirenberg, Estimates for elliptic systems from composite materials, Comm. Pure Appl. Math., 56 (2003), 892-925.doi: 10.1002/cpa.10079. |
[26] |
N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.doi: 10.1088/0266-5611/17/5/313. |
[27] |
G. Milton, The Theory of Composites, Cambridge University Press, 2002.doi: 10.1017/CBO9780511613357. |
[28] |
C. Mengcheng and T. Renji, An explicit tensor expression for the fundamental solutions of a bimaterial space problem, Applied Mathematics and Mechanics, 18 (1997), 331-340.doi: 10.1007/BF02457547. |
[29] |
A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480.doi: 10.1088/0266-5611/20/2/010. |
[30] |
G. Nakamura, Inverse problems for elasticity, in Selected Papers on Analysis and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 211, Amer. Math. Soc., Providence, RI, 2003, 71-85. |
[31] |
G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements, American Journal of Mathematics, 115 (1993), 1161-1187.doi: 10.2307/2375069. |
[32] |
G. Nakamura and G. Uhlmann, Erratum: Global uniqueness for an inverse boundary value problem arising in elasticity, Invent. Math., 118 (1994), 457-474.doi: 10.1007/BF01231541. |
[33] |
G. Nakamura and G. Uhlmann, Inverse boundary problems at the boundary for an elastic system, SIAM J. Math. Anal., 26 (1995), 263-279.doi: 10.1137/S0036141093247494. |
[34] |
L. Rongved, Force interior to one of two joined semi-infinite solids, in Proc. 2nd Midwestern Conf. Solid Mech, Purdue, 1955, 1-13. |
[35] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.doi: 10.2307/1971291. |
[36] |
S. Vessella, Locations and strengths of point sources: Stability estimates, Inverse Problems, 8 (1992), 911-917.doi: 10.1088/0266-5611/8/6/008. |