\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Resolution enhancement from scattering in passive sensor imaging with cross correlations

Abstract Related Papers Cited by
  • It was shown in [Garnier et al., SIAM J. Imaging Sciences 2 (2009), 396] that it is possible to image reflectors by backpropagating cross correlations of signals generated by ambient noise sources and recorded at passive sensor arrays. The resolution of the image depends on the directional diversity of the noise signals relative to the locations of the sensor array and the reflector. When directional diversity is limited it is possible to enhance it by exploiting the scattering properties of the medium since scatterers will act as secondary noise sources. However, scattering increases the fluctuation level of the cross correlations and therefore tends to destabilize the image by reducing its signal-to-noise ratio. In this paper we study the trade-off in passive, correlation-based imaging between resolution enhancement and signal-to-noise ratio reduction that is due to scattering.
    Mathematics Subject Classification: Primary: 35R30, 35R60; Secondary: 86A15, 78A46.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bardos, J. Garnier and G. Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals, Inverse Problems, 24 (2008), 015011, 26 pp.doi: 10.1088/0266-5611/24/1/015011.

    [2]

    J. Berryman, Stable iterative reconstruction algorithm for nonlinear travel time tomography, Inverse Problems, 6 (1990), 21-42.doi: 10.1088/0266-5611/6/1/005.

    [3]

    B. L. Biondi, 3D Seismic Imaging, no. 14 in Investigations in Geophysics, Society of Exploration Geophysics, Tulsa, 2006.

    [4]

    N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals, Dover, New York, 1986.

    [5]

    M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999.doi: 10.1017/CBO9781139644181.

    [6]

    F. Brenguier, N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant and A. Nercessian, Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, 1 (2008), 126-130.doi: 10.1038/ngeo104.

    [7]

    T. Callaghan, N. Czink, F. Mani, A. Paulraj and G. Papanicolaou, Correlation-based radio localization in an indoor environment, EURASIP Journal on Wireless Communications and Networking, 2011 (2011), 135p.doi: 10.1186/1687-1499-2011-135.

    [8]

    J. F. Claerbout, Imaging the Earth's Interior, Blackwell Scientific Publications, Palo Alto, 1985.

    [9]

    Y. Colin de Verdière, Semiclassical analysis and passive imaging, Nonlinearity, 22 (2009), R45-R75.doi: 10.1088/0951-7715/22/6/R01.

    [10]

    L. Erdös and H.-T. Yau, Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation, Comm. Pure Appl. Math., 53 (2000), 667-735.doi: 10.1002/(SICI)1097-0312(200006)53:6<667::AID-CPA1>3.0.CO;2-5.

    [11]

    J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Springer, New York, 2007.doi: 10.1007/978-0-387-49808-9_4.

    [12]

    U. Frisch, Wave Propagation in Random Media, in Probabilistic Methods in Applied Mathematics, edited by A. T. Bharucha-Reid, Academic Press, New York, 1 (1968), 75-198.

    [13]

    J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sciences, 2 (2009), 396-437.doi: 10.1137/080723454.

    [14]

    J. Garnier and G. Papanicolaou, Resolution analysis for imaging with noise, Inverse Problems, 26 (2010), 074001, 22pp.doi: 10.1088/0266-5611/26/7/074001.

    [15]

    J. Garnier and K. Sølna, Cross correlation and deconvolution of noise signals in randomly layered media, SIAM J. Imaging Sciences, 3 (2010), 809-834.doi: 10.1137/090757538.

    [16]

    O. A. Godin, Accuracy of the deterministic travel time retrieval from cross-correlations of non-diffuse ambient noise, J. Acoust. Soc. Am., 126 (2009), EL183-EL189.doi: 10.1121/1.3258064.

    [17]

    P. Gouédard, L. Stehly, F. Brenguier, M. Campillo, Y. Colin de Verdière, E. Larose, L. Margerin, P. Roux, F. J. Sanchez-Sesma, N. M. Shapiro and R. L. Weaver, Cross-correlation of random fields: Mathematical approach and applications, Geophysical Prospecting, 56 (2008), 375-393.

    [18]

    P. A. Martin, Acoustic scattering by inhomogeneous obstacles, SIAM J. Appl. Math., 64 (2003), 297-308.doi: 10.1137/S0036139902414379.

    [19]

    P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968.

    [20]

    G. Papanicolaou, L. Ryzhik and K. Sølna, Self-averaging from lateral diversity in the Ito-Schroedinger equation, SIAM Journal on Multiscale Modeling and Simulation, 6 (2007), 468-492.doi: 10.1137/060668882.

    [21]

    P. Roux, K. G. Sabra, W. A. Kuperman and A. Roux, Ambient noise cross correlation in free space: Theoretical approach, J. Acoust. Soc. Am., 117 (2005), 79-84.doi: 10.1121/1.1830673.

    [22]

    L. V. Ryzhik, G. C. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media, Wave Motion, 24 (1996), 327-370.doi: 10.1016/S0165-2125(96)00021-2.

    [23]

    N. M. Shapiro, M. Campillo, L. Stehly and M. H. Ritzwoller, High-resolution surface wave tomography from ambient noise, Science, 307 (2005), 1615-1618.doi: 10.1126/science.1108339.

    [24]

    P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic Press, San Diego, 1995.

    [25]

    R. Snieder, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69 (2004), 046610.doi: 10.1103/PhysRevE.69.046610.

    [26]

    L. Stehly, M. Campillo, B. Froment and R. Weaver, Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise, J. Geophys. Res., 113 (2008), B11306.doi: 10.1029/2008JB005693.

    [27]

    L. Stehly, M. Campillo and N. M. Shapiro, A study of the seismic noise from its long-range correlation properties, Geophys. Res. Lett., 111 (2006), B10306.doi: 10.1029/2005JB004237.

    [28]

    M. C. W. van Rossum and Th. M. Nieuwenhuizen, Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion, Reviews of Modern Physics, 71 (1999), 313-371.

    [29]

    K. Wapenaar and J. Fokkema, Green's function representations for seismic interferometry, Geophysics, 71 (2006), SI33-SI46.

    [30]

    R. Weaver and O. I. Lobkis, Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies, Phys. Rev. Lett., 87 (2001), 134301.doi: 10.1103/PhysRevLett.87.134301.

    [31]

    H. Yao, R. D. van der Hilst and M. V. de Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps, Geophysical Journal International, 166 (2006), 732-744.doi: 10.1111/j.1365-246X.2006.03028.x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(58) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return