August  2014, 8(3): 645-683. doi: 10.3934/ipi.2014.8.645

Resolution enhancement from scattering in passive sensor imaging with cross correlations

1. 

Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions, Université Paris Diderot, 75205 Paris Cedex 13, France

2. 

Mathematics Department, Stanford University, Stanford, CA 94305, United States

Received  February 2012 Revised  June 2013 Published  August 2014

It was shown in [Garnier et al., SIAM J. Imaging Sciences 2 (2009), 396] that it is possible to image reflectors by backpropagating cross correlations of signals generated by ambient noise sources and recorded at passive sensor arrays. The resolution of the image depends on the directional diversity of the noise signals relative to the locations of the sensor array and the reflector. When directional diversity is limited it is possible to enhance it by exploiting the scattering properties of the medium since scatterers will act as secondary noise sources. However, scattering increases the fluctuation level of the cross correlations and therefore tends to destabilize the image by reducing its signal-to-noise ratio. In this paper we study the trade-off in passive, correlation-based imaging between resolution enhancement and signal-to-noise ratio reduction that is due to scattering.
Citation: Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems and Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645
References:
[1]

C. Bardos, J. Garnier and G. Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals, Inverse Problems, 24 (2008), 015011, 26 pp. doi: 10.1088/0266-5611/24/1/015011.

[2]

J. Berryman, Stable iterative reconstruction algorithm for nonlinear travel time tomography, Inverse Problems, 6 (1990), 21-42. doi: 10.1088/0266-5611/6/1/005.

[3]

B. L. Biondi, 3D Seismic Imaging, no. 14 in Investigations in Geophysics, Society of Exploration Geophysics, Tulsa, 2006.

[4]

N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals, Dover, New York, 1986.

[5]

M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139644181.

[6]

F. Brenguier, N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant and A. Nercessian, Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, 1 (2008), 126-130. doi: 10.1038/ngeo104.

[7]

T. Callaghan, N. Czink, F. Mani, A. Paulraj and G. Papanicolaou, Correlation-based radio localization in an indoor environment, EURASIP Journal on Wireless Communications and Networking, 2011 (2011), 135p. doi: 10.1186/1687-1499-2011-135.

[8]

J. F. Claerbout, Imaging the Earth's Interior, Blackwell Scientific Publications, Palo Alto, 1985.

[9]

Y. Colin de Verdière, Semiclassical analysis and passive imaging, Nonlinearity, 22 (2009), R45-R75. doi: 10.1088/0951-7715/22/6/R01.

[10]

L. Erdös and H.-T. Yau, Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation, Comm. Pure Appl. Math., 53 (2000), 667-735. doi: 10.1002/(SICI)1097-0312(200006)53:6<667::AID-CPA1>3.0.CO;2-5.

[11]

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Springer, New York, 2007. doi: 10.1007/978-0-387-49808-9_4.

[12]

U. Frisch, Wave Propagation in Random Media, in Probabilistic Methods in Applied Mathematics, edited by A. T. Bharucha-Reid, Academic Press, New York, 1 (1968), 75-198.

[13]

J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sciences, 2 (2009), 396-437. doi: 10.1137/080723454.

[14]

J. Garnier and G. Papanicolaou, Resolution analysis for imaging with noise, Inverse Problems, 26 (2010), 074001, 22pp. doi: 10.1088/0266-5611/26/7/074001.

[15]

J. Garnier and K. Sølna, Cross correlation and deconvolution of noise signals in randomly layered media, SIAM J. Imaging Sciences, 3 (2010), 809-834. doi: 10.1137/090757538.

[16]

O. A. Godin, Accuracy of the deterministic travel time retrieval from cross-correlations of non-diffuse ambient noise, J. Acoust. Soc. Am., 126 (2009), EL183-EL189. doi: 10.1121/1.3258064.

[17]

P. Gouédard, L. Stehly, F. Brenguier, M. Campillo, Y. Colin de Verdière, E. Larose, L. Margerin, P. Roux, F. J. Sanchez-Sesma, N. M. Shapiro and R. L. Weaver, Cross-correlation of random fields: Mathematical approach and applications, Geophysical Prospecting, 56 (2008), 375-393.

[18]

P. A. Martin, Acoustic scattering by inhomogeneous obstacles, SIAM J. Appl. Math., 64 (2003), 297-308. doi: 10.1137/S0036139902414379.

[19]

P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968.

[20]

G. Papanicolaou, L. Ryzhik and K. Sølna, Self-averaging from lateral diversity in the Ito-Schroedinger equation, SIAM Journal on Multiscale Modeling and Simulation, 6 (2007), 468-492. doi: 10.1137/060668882.

[21]

P. Roux, K. G. Sabra, W. A. Kuperman and A. Roux, Ambient noise cross correlation in free space: Theoretical approach, J. Acoust. Soc. Am., 117 (2005), 79-84. doi: 10.1121/1.1830673.

[22]

L. V. Ryzhik, G. C. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media, Wave Motion, 24 (1996), 327-370. doi: 10.1016/S0165-2125(96)00021-2.

[23]

N. M. Shapiro, M. Campillo, L. Stehly and M. H. Ritzwoller, High-resolution surface wave tomography from ambient noise, Science, 307 (2005), 1615-1618. doi: 10.1126/science.1108339.

[24]

P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic Press, San Diego, 1995.

[25]

R. Snieder, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69 (2004), 046610. doi: 10.1103/PhysRevE.69.046610.

[26]

L. Stehly, M. Campillo, B. Froment and R. Weaver, Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise, J. Geophys. Res., 113 (2008), B11306. doi: 10.1029/2008JB005693.

[27]

L. Stehly, M. Campillo and N. M. Shapiro, A study of the seismic noise from its long-range correlation properties, Geophys. Res. Lett., 111 (2006), B10306. doi: 10.1029/2005JB004237.

[28]

M. C. W. van Rossum and Th. M. Nieuwenhuizen, Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion, Reviews of Modern Physics, 71 (1999), 313-371.

[29]

K. Wapenaar and J. Fokkema, Green's function representations for seismic interferometry, Geophysics, 71 (2006), SI33-SI46.

[30]

R. Weaver and O. I. Lobkis, Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies, Phys. Rev. Lett., 87 (2001), 134301. doi: 10.1103/PhysRevLett.87.134301.

[31]

H. Yao, R. D. van der Hilst and M. V. de Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps, Geophysical Journal International, 166 (2006), 732-744. doi: 10.1111/j.1365-246X.2006.03028.x.

show all references

References:
[1]

C. Bardos, J. Garnier and G. Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals, Inverse Problems, 24 (2008), 015011, 26 pp. doi: 10.1088/0266-5611/24/1/015011.

[2]

J. Berryman, Stable iterative reconstruction algorithm for nonlinear travel time tomography, Inverse Problems, 6 (1990), 21-42. doi: 10.1088/0266-5611/6/1/005.

[3]

B. L. Biondi, 3D Seismic Imaging, no. 14 in Investigations in Geophysics, Society of Exploration Geophysics, Tulsa, 2006.

[4]

N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals, Dover, New York, 1986.

[5]

M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139644181.

[6]

F. Brenguier, N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant and A. Nercessian, Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, 1 (2008), 126-130. doi: 10.1038/ngeo104.

[7]

T. Callaghan, N. Czink, F. Mani, A. Paulraj and G. Papanicolaou, Correlation-based radio localization in an indoor environment, EURASIP Journal on Wireless Communications and Networking, 2011 (2011), 135p. doi: 10.1186/1687-1499-2011-135.

[8]

J. F. Claerbout, Imaging the Earth's Interior, Blackwell Scientific Publications, Palo Alto, 1985.

[9]

Y. Colin de Verdière, Semiclassical analysis and passive imaging, Nonlinearity, 22 (2009), R45-R75. doi: 10.1088/0951-7715/22/6/R01.

[10]

L. Erdös and H.-T. Yau, Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation, Comm. Pure Appl. Math., 53 (2000), 667-735. doi: 10.1002/(SICI)1097-0312(200006)53:6<667::AID-CPA1>3.0.CO;2-5.

[11]

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Springer, New York, 2007. doi: 10.1007/978-0-387-49808-9_4.

[12]

U. Frisch, Wave Propagation in Random Media, in Probabilistic Methods in Applied Mathematics, edited by A. T. Bharucha-Reid, Academic Press, New York, 1 (1968), 75-198.

[13]

J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sciences, 2 (2009), 396-437. doi: 10.1137/080723454.

[14]

J. Garnier and G. Papanicolaou, Resolution analysis for imaging with noise, Inverse Problems, 26 (2010), 074001, 22pp. doi: 10.1088/0266-5611/26/7/074001.

[15]

J. Garnier and K. Sølna, Cross correlation and deconvolution of noise signals in randomly layered media, SIAM J. Imaging Sciences, 3 (2010), 809-834. doi: 10.1137/090757538.

[16]

O. A. Godin, Accuracy of the deterministic travel time retrieval from cross-correlations of non-diffuse ambient noise, J. Acoust. Soc. Am., 126 (2009), EL183-EL189. doi: 10.1121/1.3258064.

[17]

P. Gouédard, L. Stehly, F. Brenguier, M. Campillo, Y. Colin de Verdière, E. Larose, L. Margerin, P. Roux, F. J. Sanchez-Sesma, N. M. Shapiro and R. L. Weaver, Cross-correlation of random fields: Mathematical approach and applications, Geophysical Prospecting, 56 (2008), 375-393.

[18]

P. A. Martin, Acoustic scattering by inhomogeneous obstacles, SIAM J. Appl. Math., 64 (2003), 297-308. doi: 10.1137/S0036139902414379.

[19]

P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968.

[20]

G. Papanicolaou, L. Ryzhik and K. Sølna, Self-averaging from lateral diversity in the Ito-Schroedinger equation, SIAM Journal on Multiscale Modeling and Simulation, 6 (2007), 468-492. doi: 10.1137/060668882.

[21]

P. Roux, K. G. Sabra, W. A. Kuperman and A. Roux, Ambient noise cross correlation in free space: Theoretical approach, J. Acoust. Soc. Am., 117 (2005), 79-84. doi: 10.1121/1.1830673.

[22]

L. V. Ryzhik, G. C. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media, Wave Motion, 24 (1996), 327-370. doi: 10.1016/S0165-2125(96)00021-2.

[23]

N. M. Shapiro, M. Campillo, L. Stehly and M. H. Ritzwoller, High-resolution surface wave tomography from ambient noise, Science, 307 (2005), 1615-1618. doi: 10.1126/science.1108339.

[24]

P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic Press, San Diego, 1995.

[25]

R. Snieder, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69 (2004), 046610. doi: 10.1103/PhysRevE.69.046610.

[26]

L. Stehly, M. Campillo, B. Froment and R. Weaver, Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise, J. Geophys. Res., 113 (2008), B11306. doi: 10.1029/2008JB005693.

[27]

L. Stehly, M. Campillo and N. M. Shapiro, A study of the seismic noise from its long-range correlation properties, Geophys. Res. Lett., 111 (2006), B10306. doi: 10.1029/2005JB004237.

[28]

M. C. W. van Rossum and Th. M. Nieuwenhuizen, Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion, Reviews of Modern Physics, 71 (1999), 313-371.

[29]

K. Wapenaar and J. Fokkema, Green's function representations for seismic interferometry, Geophysics, 71 (2006), SI33-SI46.

[30]

R. Weaver and O. I. Lobkis, Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies, Phys. Rev. Lett., 87 (2001), 134301. doi: 10.1103/PhysRevLett.87.134301.

[31]

H. Yao, R. D. van der Hilst and M. V. de Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps, Geophysical Journal International, 166 (2006), 732-744. doi: 10.1111/j.1365-246X.2006.03028.x.

[1]

Mathias Fink, Josselin Garnier. Ambient noise correlation-based imaging with moving sensors. Inverse Problems and Imaging, 2017, 11 (3) : 477-500. doi: 10.3934/ipi.2017022

[2]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems and Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[3]

Jingzhi Li, Hongyu Liu, Hongpeng Sun, Jun Zou. Imaging acoustic obstacles by singular and hypersingular point sources. Inverse Problems and Imaging, 2013, 7 (2) : 545-563. doi: 10.3934/ipi.2013.7.545

[4]

Josselin Garnier, Knut Solna. Filtered Kirchhoff migration of cross correlations of ambient noise signals. Inverse Problems and Imaging, 2011, 5 (2) : 371-390. doi: 10.3934/ipi.2011.5.371

[5]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[6]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems and Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[7]

Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems and Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235

[8]

Matti Lassas, Teemu Saksala, Hanming Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Problems and Imaging, 2018, 12 (4) : 993-1031. doi: 10.3934/ipi.2018042

[9]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[10]

Ioana Ciotir. Stochastic porous media equations with divergence Itô noise. Evolution Equations and Control Theory, 2020, 9 (2) : 375-398. doi: 10.3934/eect.2020010

[11]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems and Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[12]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems and Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[13]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[14]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems and Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[15]

Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations and Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042

[16]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[17]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems and Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[18]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems and Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[19]

João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks and Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223

[20]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control and Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]