August  2014, 8(3): 713-732. doi: 10.3934/ipi.2014.8.713

Stability of the determination of a coefficient for wave equations in an infinite waveguide

1. 

CPT, UMR CNRS 7332, Aix Marseille Université, Campus de Luminy, Case 907, 13288 Marseille, cedex 9, France

Received  September 2013 Revised  June 2014 Published  August 2014

We consider the stability of the inverse problem consisting of the determination of a coefficient of order zero $q$, appearing in the Dirichlet initial-boundary value problem for a wave equation $\partial_t^2u-\Delta u+q(x)u=0$ in $(0,T)\times\Omega$, with $\Omega=\omega\times\mathbb{R}$ an unbounded cylindrical waveguide and $\omega$ a bounded smooth domain of $\mathbb{R}^2$, from boundary observations. The observation is given by the Dirichlet to Neumann map associated to the wave equation. Using suitable geometric optics solutions, we prove a Hölder stability estimate in the determination of $q$ from the Dirichlet to Neumann map. Moreover, provided that the coefficient $q$ is lying in a set of functions $\mathcal A$, where, for any $q_1,q_2\in\mathcal A$, $|q_1-q_2|$ attains its maximum in a fixed bounded subset of $\overline{\Omega}$, we extend this result to the same inverse problem with measurements on a bounded subset of the lateral boundary $(0,T)\times\partial\Omega$.
Citation: Yavar Kian. Stability of the determination of a coefficient for wave equations in an infinite waveguide. Inverse Problems & Imaging, 2014, 8 (3) : 713-732. doi: 10.3934/ipi.2014.8.713
References:
[1]

M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Appl. Anal., 83 (2004), 983.  doi: 10.1080/0003681042000221678.  Google Scholar

[2]

M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem,, J. Diff. Equat., 247 (2009), 465.  doi: 10.1016/j.jde.2009.03.024.  Google Scholar

[3]

M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data,, Appl. Anal., 85 (2006), 1219.  doi: 10.1080/00036810600787873.  Google Scholar

[4]

M. Bellassoued, D. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map,, J. Math. Anal. Appl, 343 (2008), 1036.  doi: 10.1016/j.jmaa.2008.01.098.  Google Scholar

[5]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems,, Sov. Math. Dokl., 24 (1981), 244.   Google Scholar

[6]

M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques,, Mathématiques et Applications, (2009).   Google Scholar

[7]

M. Choulli and E. Soccorsi, Some inverse anisotropic conductivity problem induced by twisting a homogeneous cylindrical domain,, preprint, ().   Google Scholar

[8]

G. Eskin, A new approach to hyperbolic inverse problems,, Inverse Problems, 22 (2006), 815.  doi: 10.1088/0266-5611/22/3/005.  Google Scholar

[9]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients,, Comm. PDE, 32 (2007), 1737.  doi: 10.1080/03605300701382340.  Google Scholar

[10]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect,, J. Math. Phys., 49 (2008), 1.  doi: 10.1063/1.2841329.  Google Scholar

[11]

C. Hamaker, K. T. Smith, D. C. Solomonand and S. C. Wagner, The divergent beam x-ray transform,, Rocky Mountain J. Math., 10 (1980), 253.  doi: 10.1216/RMJ-1980-10-1-253.  Google Scholar

[12]

M. Ikehata, Inverse conductivity problem in the infinite slab,, Inverse Problems, 17 (2001), 437.  doi: 10.1088/0266-5611/17/3/305.  Google Scholar

[13]

O. Yu. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations,, Comm. PDE, 26 (2001), 1409.  doi: 10.1081/PDE-100106139.  Google Scholar

[14]

V. Isakov, An inverse hyperbolic problem with many boundary measurements,, Comm. PDE, 16 (1991), 1183.  doi: 10.1080/03605309108820794.  Google Scholar

[15]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data,, Inverse Problems, 8 (1992), 193.  doi: 10.1088/0266-5611/8/2/003.  Google Scholar

[16]

M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8 (1992), 575.  doi: 10.1088/0266-5611/8/4/009.  Google Scholar

[17]

K. Krupchyk , M. Lassas and G. Uhlmann, Inverse Problems With Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab and on a Bounded Domain,, Communications in Mathematical Physics, 312 (2012), 87.  doi: 10.1007/s00220-012-1431-1.  Google Scholar

[18]

I. Lasiecka, J.-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[19]

X. Li and G. Uhlmann, Inverse problems with partial data in a slab,, Inverse Probl. Imaging, 4 (2010), 449.  doi: 10.3934/ipi.2010.4.449.  Google Scholar

[20]

J-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications,, Vol. I, (1968).   Google Scholar

[21]

J-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications,, Vol. II, (1968).   Google Scholar

[22]

S-I. Nakamura, Uniqueness for an Inverse Problem for the Wave Equation in the Half Space,, Tokyo J. of Math., 19 (1996), 187.  doi: 10.3836/tjm/1270043228.  Google Scholar

[23]

F. Natterer, The Mathematics of Computarized Tomography,, John Wiley & Sons, (1986).   Google Scholar

[24]

Rakesh, Reconstruction for an inverse problem for the wave equation with constant velocity,, Inverse Problems, 6 (1990), 91.  doi: 10.1088/0266-5611/6/1/009.  Google Scholar

[25]

Rakesh, An inverse problem for the wave equation in the half plane,, Inverse Problems, 9 (1993), 433.  doi: 10.1088/0266-5611/9/3/005.  Google Scholar

[26]

Rakesh and W. Symes, Uniqueness for an inverse problem for the wave equation,, Comm. PDE, 13 (1988), 87.  doi: 10.1080/03605308808820539.  Google Scholar

[27]

A. Ramm and J. Sjöstrand, An inverse problem of the wave equation,, Math. Z., 206 (1991), 119.  doi: 10.1007/BF02571330.  Google Scholar

[28]

M. Salo and J. N. Wang, Complex spherical waves and inverse problems in unbounded domains,, Inverse Problems, 22 (2006), 2299.  doi: 10.1088/0266-5611/22/6/023.  Google Scholar

[29]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media,, J. Funct. Anal., 154 (1998), 330.  doi: 10.1006/jfan.1997.3188.  Google Scholar

show all references

References:
[1]

M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Appl. Anal., 83 (2004), 983.  doi: 10.1080/0003681042000221678.  Google Scholar

[2]

M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem,, J. Diff. Equat., 247 (2009), 465.  doi: 10.1016/j.jde.2009.03.024.  Google Scholar

[3]

M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data,, Appl. Anal., 85 (2006), 1219.  doi: 10.1080/00036810600787873.  Google Scholar

[4]

M. Bellassoued, D. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map,, J. Math. Anal. Appl, 343 (2008), 1036.  doi: 10.1016/j.jmaa.2008.01.098.  Google Scholar

[5]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems,, Sov. Math. Dokl., 24 (1981), 244.   Google Scholar

[6]

M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques,, Mathématiques et Applications, (2009).   Google Scholar

[7]

M. Choulli and E. Soccorsi, Some inverse anisotropic conductivity problem induced by twisting a homogeneous cylindrical domain,, preprint, ().   Google Scholar

[8]

G. Eskin, A new approach to hyperbolic inverse problems,, Inverse Problems, 22 (2006), 815.  doi: 10.1088/0266-5611/22/3/005.  Google Scholar

[9]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients,, Comm. PDE, 32 (2007), 1737.  doi: 10.1080/03605300701382340.  Google Scholar

[10]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect,, J. Math. Phys., 49 (2008), 1.  doi: 10.1063/1.2841329.  Google Scholar

[11]

C. Hamaker, K. T. Smith, D. C. Solomonand and S. C. Wagner, The divergent beam x-ray transform,, Rocky Mountain J. Math., 10 (1980), 253.  doi: 10.1216/RMJ-1980-10-1-253.  Google Scholar

[12]

M. Ikehata, Inverse conductivity problem in the infinite slab,, Inverse Problems, 17 (2001), 437.  doi: 10.1088/0266-5611/17/3/305.  Google Scholar

[13]

O. Yu. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations,, Comm. PDE, 26 (2001), 1409.  doi: 10.1081/PDE-100106139.  Google Scholar

[14]

V. Isakov, An inverse hyperbolic problem with many boundary measurements,, Comm. PDE, 16 (1991), 1183.  doi: 10.1080/03605309108820794.  Google Scholar

[15]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data,, Inverse Problems, 8 (1992), 193.  doi: 10.1088/0266-5611/8/2/003.  Google Scholar

[16]

M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8 (1992), 575.  doi: 10.1088/0266-5611/8/4/009.  Google Scholar

[17]

K. Krupchyk , M. Lassas and G. Uhlmann, Inverse Problems With Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab and on a Bounded Domain,, Communications in Mathematical Physics, 312 (2012), 87.  doi: 10.1007/s00220-012-1431-1.  Google Scholar

[18]

I. Lasiecka, J.-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[19]

X. Li and G. Uhlmann, Inverse problems with partial data in a slab,, Inverse Probl. Imaging, 4 (2010), 449.  doi: 10.3934/ipi.2010.4.449.  Google Scholar

[20]

J-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications,, Vol. I, (1968).   Google Scholar

[21]

J-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications,, Vol. II, (1968).   Google Scholar

[22]

S-I. Nakamura, Uniqueness for an Inverse Problem for the Wave Equation in the Half Space,, Tokyo J. of Math., 19 (1996), 187.  doi: 10.3836/tjm/1270043228.  Google Scholar

[23]

F. Natterer, The Mathematics of Computarized Tomography,, John Wiley & Sons, (1986).   Google Scholar

[24]

Rakesh, Reconstruction for an inverse problem for the wave equation with constant velocity,, Inverse Problems, 6 (1990), 91.  doi: 10.1088/0266-5611/6/1/009.  Google Scholar

[25]

Rakesh, An inverse problem for the wave equation in the half plane,, Inverse Problems, 9 (1993), 433.  doi: 10.1088/0266-5611/9/3/005.  Google Scholar

[26]

Rakesh and W. Symes, Uniqueness for an inverse problem for the wave equation,, Comm. PDE, 13 (1988), 87.  doi: 10.1080/03605308808820539.  Google Scholar

[27]

A. Ramm and J. Sjöstrand, An inverse problem of the wave equation,, Math. Z., 206 (1991), 119.  doi: 10.1007/BF02571330.  Google Scholar

[28]

M. Salo and J. N. Wang, Complex spherical waves and inverse problems in unbounded domains,, Inverse Problems, 22 (2006), 2299.  doi: 10.1088/0266-5611/22/6/023.  Google Scholar

[29]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media,, J. Funct. Anal., 154 (1998), 330.  doi: 10.1006/jfan.1997.3188.  Google Scholar

[1]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[2]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[5]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[6]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[7]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[8]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[9]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[10]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[11]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[12]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[13]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[14]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[15]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[16]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[19]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[20]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]