February  2014, 8(1): 79-102. doi: 10.3934/ipi.2014.8.79

Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography

1. 

School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160, United States, United States, United States

2. 

School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW Atlanta, GA 30332, United States

Received  January 2013 Revised  June 2013 Published  March 2014

We present a new approach to solve the inverse source problem arising in Fluorescence Tomography (FT). In general, the solution is non-unique and the problem is severely ill-posed. It poses tremendous challenges in image reconstructions. In practice, the most widely used methods are based on Tikhonov-type regularizations, which minimize a cost function consisting of a regularization term and a data fitting term. We propose an alternative method which overcomes the major difficulties, namely the non-uniqueness of the solution and noisy data fitting, in two separate steps. First we find a particular solution called the orthogonal solution that satisfies the data fitting term. Then we add to it a correction function in the kernel space so that the final solution fulfills other regularity and physical requirements. The key ideas are that the correction function in the kernel has no impact on the data fitting, so that there is no parameter needed to balance the data fitting and additional constraints on the solution. Moreover, we use an efficient basis to represent the source function, and introduce a hybrid strategy combining spectral methods and finite element methods in the proposed algorithm. The resulting algorithm can dramatically increase the computation speed over the existing methods. Also the numerical evidence shows that it significantly improves the image resolution and robustness against noise.
Citation: Shui-Nee Chow, Ke Yin, Hao-Min Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 79-102. doi: 10.3934/ipi.2014.8.79
References:
[1]

S. R. Arridge, Optical tomography in medical imaging,, Inverse Problems, 15 (1999), 0266.  doi: 10.1088/0266-5611/15/2/022.  Google Scholar

[2]

S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems,, Inverse Problems, 25 (2009), 0266.  doi: 10.1088/0266-5611/25/12/123010.  Google Scholar

[3]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm,, Journal of Computational Physics, 227 (2007), 755.  doi: 10.1016/j.jcp.2007.08.020.  Google Scholar

[4]

A. Behrooz, H. Zhou, A. Eftekhar and A. Adibi, Total variation regularization for 3d reconstruction in fluorescence tomography: experimental phantom studies,, Applied Optics, 51 (2012), 8216.  doi: 10.1364/AO.51.008216.  Google Scholar

[5]

C. Bremer, V. Ntziachristos and R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications,, European Radiology, 13 (2003), 231.   Google Scholar

[6]

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods,, vol. 15, (2007).   Google Scholar

[7]

J. Cai, E. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion,, SIAM Journal on Optimization, 20 (2010), 1956.  doi: 10.1137/080738970.  Google Scholar

[8]

Y. Censor and E. Tom, Convergence of string-averaging projection schemes for inconsistent convex feasibility problems,, Optimization Methods and Software, 18 (2003), 543.  doi: 10.1080/10556780310001610484.  Google Scholar

[9]

Y. Chen, W. Hager, M. Yashtini, X. Ye and H. Zhang, Bregman operator splitting with variable stepsize for total variation image reconstruction,, Comput. Optim. Appl., 54 (2013).  doi: 10.1007/s10589-012-9519-2.  Google Scholar

[10]

Y. Dai and R. Fletcher, Projected barzilai-borwein methods for large-scale box-constrained quadratic programming,, Numerische Mathematik, 100 (2005), 21.  doi: 10.1007/s00211-004-0569-y.  Google Scholar

[11]

Y. Dai and L. Liao, R-linear convergence of the barzilai and borwein gradient method,, IMA Journal of Numerical Analysis, 22 (2002), 1.  doi: 10.1093/imanum/22.1.1.  Google Scholar

[12]

J. Dutta, S. Ahn, A. Joshi and R. Leahy, Optimal illumination patterns for fluorescence tomography,, in Biomedical Imaging: From Nano to Macro, (2009), 1275.  doi: 10.1109/ISBI.2009.5193295.  Google Scholar

[13]

J. Dutta, S. Ahn, C. Li, S. R. Cherry and R. M. Leahy, Joint l1 and total variation regularization for fluorescence molecular tomography,, Physics in Medicine and Biology, 57 (2012), 1459.   Google Scholar

[14]

H. Egger, M. Freiberger and M. Schlottbom, On forward and inverse models in fluorescence diffuse optical tomography,, Inverse Problems and Imaging, 4 (2010), 411.  doi: 10.3934/ipi.2010.4.411.  Google Scholar

[15]

H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, vol. 375, (1996).  doi: 10.1007/978-94-009-1740-8.  Google Scholar

[16]

E. Esser, Applications of lagrangian-based alternating direction methods and connections to split bregman,, CAM Report, 9 (2009).   Google Scholar

[17]

T. J. Farrell, M. S. Patterson and B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,, Medical Physics, 19 (1992), 879.  doi: 10.1118/1.596777.  Google Scholar

[18]

H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 1: l1 regularization,, Optics Express, 18 (2010), 1854.  doi: 10.1364/OE.18.001854.  Google Scholar

[19]

H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 2: total variation and l1 data fidelity,, Optics Express, 18 (2010), 2894.  doi: 10.1364/OE.18.002894.  Google Scholar

[20]

T. Goldstein and S. Osher, The split bregman method for l1-regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323.  doi: 10.1137/080725891.  Google Scholar

[21]

G. Golub and C. Van Loan, Matrix Computations,, vol. 3, (1996).   Google Scholar

[22]

P. Hansen and D. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems,, SIAM Journal on Scientific Computing, 14 (1993), 1487.  doi: 10.1137/0914086.  Google Scholar

[23]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams and B. J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer,, Journal of the Optical Society of America. A, 11 (1994), 2727.  doi: 10.1364/JOSAA.11.002727.  Google Scholar

[24]

D. Hawrysz and E. Sevick-Muraca, Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,, Neoplasia (New York, 2 (2000).  doi: 10.1038/sj.neo.7900118.  Google Scholar

[25]

J. Hebden, S. Arridge and D. Delpy, Optical imaging in medicine: I. experimental techniques,, Physics in Medicine and Biology, 42 (1999).  doi: 10.1088/0031-9155/42/5/007.  Google Scholar

[26]

G. Herman, A. Lent and S. Rowland, ART: Mathematics and applications: A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques,, Journal of theoretical biology, 42 (1973), 1.  doi: 10.1016/0022-5193(74)90135-0.  Google Scholar

[27]

A. Ishimaru, Wave Propagation and Scattering in Random Media,, vol. 2, (1997).   Google Scholar

[28]

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems,, vol. 160, (2004).   Google Scholar

[29]

O. A. Ladyzhenskaia and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).   Google Scholar

[30]

V. A. Markel and J. C. Schotland, Inverse problem in optical diffusion tomography. II. role of boundary conditions,, Journal of the Optical Society of America. A, 19 (2002), 558.  doi: 10.1364/JOSAA.19.000558.  Google Scholar

[31]

A. Neumaier, Solving ill-conditioned and singular linear systems: A tutorial on regularization,, SIAM Review, 40 (1998), 636.  doi: 10.1137/S0036144597321909.  Google Scholar

[32]

Y. Notay, An aggregation-based algebraic multigrid method,, Electronic Transactions on Numerical Analysis, 37 (2010), 123.   Google Scholar

[33]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[34]

W. Rudin, Functional Analysis,, McGraw-Hill, (1991).  doi: 10.1007/978-3-642-84455-3_77.  Google Scholar

[35]

J. C. Schotland and V. A. Markel, Inverse scattering with diffusing waves,, Journal of the Optical Society of America. A, 18 (2001), 2767.  doi: 10.1364/JOSAA.18.002767.  Google Scholar

[36]

M. Schweiger, S. R. Arridge, M. Hiraoka and D. Delpy, The finite element method for the propagation of light in scattering media: Boundary and source conditions,, Medical Physics, 22 (1995).  doi: 10.1118/1.597634.  Google Scholar

[37]

G. Wang, Y. Li and M. Jiang, Uniqueness theorems in bioluminescence tomography,, Medical Physics, 31 (2004).  doi: 10.1118/1.1766420.  Google Scholar

[38]

Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction,, SIAM Journal on Imaging Sciences, 1 (2008).  doi: 10.1137/080724265.  Google Scholar

[39]

R. Weissleder, C. Tung, U. Mahmood and A. Bogdanov, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,, Nature Biotechnology, 17 (1999), 375.   Google Scholar

[40]

C. Wu and X. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models,, SIAM J. Imaging Sci., 3 (2010), 300.  doi: 10.1137/090767558.  Google Scholar

show all references

References:
[1]

S. R. Arridge, Optical tomography in medical imaging,, Inverse Problems, 15 (1999), 0266.  doi: 10.1088/0266-5611/15/2/022.  Google Scholar

[2]

S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems,, Inverse Problems, 25 (2009), 0266.  doi: 10.1088/0266-5611/25/12/123010.  Google Scholar

[3]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm,, Journal of Computational Physics, 227 (2007), 755.  doi: 10.1016/j.jcp.2007.08.020.  Google Scholar

[4]

A. Behrooz, H. Zhou, A. Eftekhar and A. Adibi, Total variation regularization for 3d reconstruction in fluorescence tomography: experimental phantom studies,, Applied Optics, 51 (2012), 8216.  doi: 10.1364/AO.51.008216.  Google Scholar

[5]

C. Bremer, V. Ntziachristos and R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications,, European Radiology, 13 (2003), 231.   Google Scholar

[6]

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods,, vol. 15, (2007).   Google Scholar

[7]

J. Cai, E. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion,, SIAM Journal on Optimization, 20 (2010), 1956.  doi: 10.1137/080738970.  Google Scholar

[8]

Y. Censor and E. Tom, Convergence of string-averaging projection schemes for inconsistent convex feasibility problems,, Optimization Methods and Software, 18 (2003), 543.  doi: 10.1080/10556780310001610484.  Google Scholar

[9]

Y. Chen, W. Hager, M. Yashtini, X. Ye and H. Zhang, Bregman operator splitting with variable stepsize for total variation image reconstruction,, Comput. Optim. Appl., 54 (2013).  doi: 10.1007/s10589-012-9519-2.  Google Scholar

[10]

Y. Dai and R. Fletcher, Projected barzilai-borwein methods for large-scale box-constrained quadratic programming,, Numerische Mathematik, 100 (2005), 21.  doi: 10.1007/s00211-004-0569-y.  Google Scholar

[11]

Y. Dai and L. Liao, R-linear convergence of the barzilai and borwein gradient method,, IMA Journal of Numerical Analysis, 22 (2002), 1.  doi: 10.1093/imanum/22.1.1.  Google Scholar

[12]

J. Dutta, S. Ahn, A. Joshi and R. Leahy, Optimal illumination patterns for fluorescence tomography,, in Biomedical Imaging: From Nano to Macro, (2009), 1275.  doi: 10.1109/ISBI.2009.5193295.  Google Scholar

[13]

J. Dutta, S. Ahn, C. Li, S. R. Cherry and R. M. Leahy, Joint l1 and total variation regularization for fluorescence molecular tomography,, Physics in Medicine and Biology, 57 (2012), 1459.   Google Scholar

[14]

H. Egger, M. Freiberger and M. Schlottbom, On forward and inverse models in fluorescence diffuse optical tomography,, Inverse Problems and Imaging, 4 (2010), 411.  doi: 10.3934/ipi.2010.4.411.  Google Scholar

[15]

H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, vol. 375, (1996).  doi: 10.1007/978-94-009-1740-8.  Google Scholar

[16]

E. Esser, Applications of lagrangian-based alternating direction methods and connections to split bregman,, CAM Report, 9 (2009).   Google Scholar

[17]

T. J. Farrell, M. S. Patterson and B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,, Medical Physics, 19 (1992), 879.  doi: 10.1118/1.596777.  Google Scholar

[18]

H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 1: l1 regularization,, Optics Express, 18 (2010), 1854.  doi: 10.1364/OE.18.001854.  Google Scholar

[19]

H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 2: total variation and l1 data fidelity,, Optics Express, 18 (2010), 2894.  doi: 10.1364/OE.18.002894.  Google Scholar

[20]

T. Goldstein and S. Osher, The split bregman method for l1-regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323.  doi: 10.1137/080725891.  Google Scholar

[21]

G. Golub and C. Van Loan, Matrix Computations,, vol. 3, (1996).   Google Scholar

[22]

P. Hansen and D. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems,, SIAM Journal on Scientific Computing, 14 (1993), 1487.  doi: 10.1137/0914086.  Google Scholar

[23]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams and B. J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer,, Journal of the Optical Society of America. A, 11 (1994), 2727.  doi: 10.1364/JOSAA.11.002727.  Google Scholar

[24]

D. Hawrysz and E. Sevick-Muraca, Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,, Neoplasia (New York, 2 (2000).  doi: 10.1038/sj.neo.7900118.  Google Scholar

[25]

J. Hebden, S. Arridge and D. Delpy, Optical imaging in medicine: I. experimental techniques,, Physics in Medicine and Biology, 42 (1999).  doi: 10.1088/0031-9155/42/5/007.  Google Scholar

[26]

G. Herman, A. Lent and S. Rowland, ART: Mathematics and applications: A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques,, Journal of theoretical biology, 42 (1973), 1.  doi: 10.1016/0022-5193(74)90135-0.  Google Scholar

[27]

A. Ishimaru, Wave Propagation and Scattering in Random Media,, vol. 2, (1997).   Google Scholar

[28]

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems,, vol. 160, (2004).   Google Scholar

[29]

O. A. Ladyzhenskaia and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).   Google Scholar

[30]

V. A. Markel and J. C. Schotland, Inverse problem in optical diffusion tomography. II. role of boundary conditions,, Journal of the Optical Society of America. A, 19 (2002), 558.  doi: 10.1364/JOSAA.19.000558.  Google Scholar

[31]

A. Neumaier, Solving ill-conditioned and singular linear systems: A tutorial on regularization,, SIAM Review, 40 (1998), 636.  doi: 10.1137/S0036144597321909.  Google Scholar

[32]

Y. Notay, An aggregation-based algebraic multigrid method,, Electronic Transactions on Numerical Analysis, 37 (2010), 123.   Google Scholar

[33]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[34]

W. Rudin, Functional Analysis,, McGraw-Hill, (1991).  doi: 10.1007/978-3-642-84455-3_77.  Google Scholar

[35]

J. C. Schotland and V. A. Markel, Inverse scattering with diffusing waves,, Journal of the Optical Society of America. A, 18 (2001), 2767.  doi: 10.1364/JOSAA.18.002767.  Google Scholar

[36]

M. Schweiger, S. R. Arridge, M. Hiraoka and D. Delpy, The finite element method for the propagation of light in scattering media: Boundary and source conditions,, Medical Physics, 22 (1995).  doi: 10.1118/1.597634.  Google Scholar

[37]

G. Wang, Y. Li and M. Jiang, Uniqueness theorems in bioluminescence tomography,, Medical Physics, 31 (2004).  doi: 10.1118/1.1766420.  Google Scholar

[38]

Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction,, SIAM Journal on Imaging Sciences, 1 (2008).  doi: 10.1137/080724265.  Google Scholar

[39]

R. Weissleder, C. Tung, U. Mahmood and A. Bogdanov, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,, Nature Biotechnology, 17 (1999), 375.   Google Scholar

[40]

C. Wu and X. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models,, SIAM J. Imaging Sci., 3 (2010), 300.  doi: 10.1137/090767558.  Google Scholar

[1]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[2]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[3]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[4]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[5]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[8]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[9]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[12]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[13]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[14]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[15]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[16]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[17]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[18]

Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021003

[19]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[20]

Andrea Malchiodi. Perturbative techniques for the construction of spike-layers. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3767-3787. doi: 10.3934/dcds.2020055

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]