February  2014, 8(1): 79-102. doi: 10.3934/ipi.2014.8.79

Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography

1. 

School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160, United States, United States, United States

2. 

School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW Atlanta, GA 30332, United States

Received  January 2013 Revised  June 2013 Published  March 2014

We present a new approach to solve the inverse source problem arising in Fluorescence Tomography (FT). In general, the solution is non-unique and the problem is severely ill-posed. It poses tremendous challenges in image reconstructions. In practice, the most widely used methods are based on Tikhonov-type regularizations, which minimize a cost function consisting of a regularization term and a data fitting term. We propose an alternative method which overcomes the major difficulties, namely the non-uniqueness of the solution and noisy data fitting, in two separate steps. First we find a particular solution called the orthogonal solution that satisfies the data fitting term. Then we add to it a correction function in the kernel space so that the final solution fulfills other regularity and physical requirements. The key ideas are that the correction function in the kernel has no impact on the data fitting, so that there is no parameter needed to balance the data fitting and additional constraints on the solution. Moreover, we use an efficient basis to represent the source function, and introduce a hybrid strategy combining spectral methods and finite element methods in the proposed algorithm. The resulting algorithm can dramatically increase the computation speed over the existing methods. Also the numerical evidence shows that it significantly improves the image resolution and robustness against noise.
Citation: Shui-Nee Chow, Ke Yin, Hao-Min Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems and Imaging, 2014, 8 (1) : 79-102. doi: 10.3934/ipi.2014.8.79
References:
[1]

S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93, URLhttp://iopscience.iop.org/0266-5611/15/2/022. doi: 10.1088/0266-5611/15/2/022.

[2]

S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems, Inverse Problems, 25 (2009), 123010, URLhttp://stacks.iop.org/0266-5611/25/i=12/a=123010?key=crossref .f11916d483a3f159d89cc0d87c982047. doi: 10.1088/0266-5611/25/12/123010.

[3]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, Journal of Computational Physics, 227 (2007), 755-762. doi: 10.1016/j.jcp.2007.08.020.

[4]

A. Behrooz, H. Zhou, A. Eftekhar and A. Adibi, Total variation regularization for 3d reconstruction in fluorescence tomography: experimental phantom studies, Applied Optics, 51 (2012), 8216-8227. doi: 10.1364/AO.51.008216.

[5]

C. Bremer, V. Ntziachristos and R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications, European Radiology, 13 (2003), 231-243.

[6]

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15, Springer, 2007.

[7]

J. Cai, E. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 20 (2010), 1956-1982. doi: 10.1137/080738970.

[8]

Y. Censor and E. Tom, Convergence of string-averaging projection schemes for inconsistent convex feasibility problems, Optimization Methods and Software, 18 (2003), 543-554. doi: 10.1080/10556780310001610484.

[9]

Y. Chen, W. Hager, M. Yashtini, X. Ye and H. Zhang, Bregman operator splitting with variable stepsize for total variation image reconstruction, Comput. Optim. Appl., 54 (2013), 317–-342. doi: 10.1007/s10589-012-9519-2.

[10]

Y. Dai and R. Fletcher, Projected barzilai-borwein methods for large-scale box-constrained quadratic programming, Numerische Mathematik, 100 (2005), 21-47. doi: 10.1007/s00211-004-0569-y.

[11]

Y. Dai and L. Liao, R-linear convergence of the barzilai and borwein gradient method, IMA Journal of Numerical Analysis, 22 (2002), 1-10. doi: 10.1093/imanum/22.1.1.

[12]

J. Dutta, S. Ahn, A. Joshi and R. Leahy, Optimal illumination patterns for fluorescence tomography, in Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on, IEEE, (2009), 1275-1278. doi: 10.1109/ISBI.2009.5193295.

[13]

J. Dutta, S. Ahn, C. Li, S. R. Cherry and R. M. Leahy, Joint l1 and total variation regularization for fluorescence molecular tomography, Physics in Medicine and Biology, 57 (2012), 1459-1476, URLhttp://www.ncbi.nlm.nih.gov/pubmed/22390906, PMID: 22390906.

[14]

H. Egger, M. Freiberger and M. Schlottbom, On forward and inverse models in fluorescence diffuse optical tomography, Inverse Problems and Imaging, 4 (2010), 411-427. doi: 10.3934/ipi.2010.4.411.

[15]

H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, vol. 375, Springer, 1996. doi: 10.1007/978-94-009-1740-8.

[16]

E. Esser, Applications of lagrangian-based alternating direction methods and connections to split bregman, CAM Report, 9 (2009), 31 pp.

[17]

T. J. Farrell, M. S. Patterson and B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo, Medical Physics, 19 (1992), 879-888, URLhttp://www.ncbi.nlm.nih.gov/pubmed/1518476, PMID: 1518476. doi: 10.1118/1.596777.

[18]

H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 1: l1 regularization, Optics Express, 18 (2010), 1854-1871. doi: 10.1364/OE.18.001854.

[19]

H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 2: total variation and l1 data fidelity, Optics Express, 18 (2010), 2894-2912. doi: 10.1364/OE.18.002894.

[20]

T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343. doi: 10.1137/080725891.

[21]

G. Golub and C. Van Loan, Matrix Computations, vol. 3, Johns Hopkins University Press, 1996.

[22]

P. Hansen and D. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14 (1993), 1487-1503. doi: 10.1137/0914086.

[23]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams and B. J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer, Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 11 (1994), 2727-2741, URLhttp://www.ncbi.nlm.nih.gov/pubmed/7931757, PMID: 7931757. doi: 10.1364/JOSAA.11.002727.

[24]

D. Hawrysz and E. Sevick-Muraca, Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents, Neoplasia (New York, NY), 2 (2000), 388 pp. doi: 10.1038/sj.neo.7900118.

[25]

J. Hebden, S. Arridge and D. Delpy, Optical imaging in medicine: I. experimental techniques, Physics in Medicine and Biology, 42 (1999), 825. doi: 10.1088/0031-9155/42/5/007.

[26]

G. Herman, A. Lent and S. Rowland, ART: Mathematics and applications: A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques, Journal of theoretical biology, 42 (1973), 1-32. doi: 10.1016/0022-5193(74)90135-0.

[27]

A. Ishimaru, Wave Propagation and Scattering in Random Media, vol. 2, IEEE press Piscataway, NJ, 1997.

[28]

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, vol. 160, Springer, 2004.

[29]

O. A. Ladyzhenskaia and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Academic Press, 1968.

[30]

V. A. Markel and J. C. Schotland, Inverse problem in optical diffusion tomography. II. role of boundary conditions, Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19 (2002), 558-566, URLhttp://www.ncbi.nlm.nih.gov/pubmed/11876321, PMID: 11876321. doi: 10.1364/JOSAA.19.000558.

[31]

A. Neumaier, Solving ill-conditioned and singular linear systems: A tutorial on regularization, SIAM Review, 40 (1998), 636-666. doi: 10.1137/S0036144597321909.

[32]

Y. Notay, An aggregation-based algebraic multigrid method, Electronic Transactions on Numerical Analysis, 37 (2010), 123-146.

[33]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.

[34]

W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991. doi: 10.1007/978-3-642-84455-3_77.

[35]

J. C. Schotland and V. A. Markel, Inverse scattering with diffusing waves, Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 18 (2001), 2767-2777, URLhttp://www.ncbi.nlm.nih.gov/pubmed/11688867, PMID: 11688867. doi: 10.1364/JOSAA.18.002767.

[36]

M. Schweiger, S. R. Arridge, M. Hiraoka and D. Delpy, The finite element method for the propagation of light in scattering media: Boundary and source conditions, Medical Physics, 22 (1995), 1779, URLhttp://adsabs.harvard.edu/abs/1995MedPh..22.1779S. doi: 10.1118/1.597634.

[37]

G. Wang, Y. Li and M. Jiang, Uniqueness theorems in bioluminescence tomography, Medical Physics, 31 (2004), 2289, URLhttp://link.aip.org/link/MPHYA6/v31/i8/p2289/s1&Agg=doi. doi: 10.1118/1.1766420.

[38]

Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248. doi: 10.1137/080724265.

[39]

R. Weissleder, C. Tung, U. Mahmood and A. Bogdanov, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nature Biotechnology, 17 (1999), 375-378.

[40]

C. Wu and X. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339. doi: 10.1137/090767558.

show all references

References:
[1]

S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93, URLhttp://iopscience.iop.org/0266-5611/15/2/022. doi: 10.1088/0266-5611/15/2/022.

[2]

S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems, Inverse Problems, 25 (2009), 123010, URLhttp://stacks.iop.org/0266-5611/25/i=12/a=123010?key=crossref .f11916d483a3f159d89cc0d87c982047. doi: 10.1088/0266-5611/25/12/123010.

[3]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, Journal of Computational Physics, 227 (2007), 755-762. doi: 10.1016/j.jcp.2007.08.020.

[4]

A. Behrooz, H. Zhou, A. Eftekhar and A. Adibi, Total variation regularization for 3d reconstruction in fluorescence tomography: experimental phantom studies, Applied Optics, 51 (2012), 8216-8227. doi: 10.1364/AO.51.008216.

[5]

C. Bremer, V. Ntziachristos and R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications, European Radiology, 13 (2003), 231-243.

[6]

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15, Springer, 2007.

[7]

J. Cai, E. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 20 (2010), 1956-1982. doi: 10.1137/080738970.

[8]

Y. Censor and E. Tom, Convergence of string-averaging projection schemes for inconsistent convex feasibility problems, Optimization Methods and Software, 18 (2003), 543-554. doi: 10.1080/10556780310001610484.

[9]

Y. Chen, W. Hager, M. Yashtini, X. Ye and H. Zhang, Bregman operator splitting with variable stepsize for total variation image reconstruction, Comput. Optim. Appl., 54 (2013), 317–-342. doi: 10.1007/s10589-012-9519-2.

[10]

Y. Dai and R. Fletcher, Projected barzilai-borwein methods for large-scale box-constrained quadratic programming, Numerische Mathematik, 100 (2005), 21-47. doi: 10.1007/s00211-004-0569-y.

[11]

Y. Dai and L. Liao, R-linear convergence of the barzilai and borwein gradient method, IMA Journal of Numerical Analysis, 22 (2002), 1-10. doi: 10.1093/imanum/22.1.1.

[12]

J. Dutta, S. Ahn, A. Joshi and R. Leahy, Optimal illumination patterns for fluorescence tomography, in Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on, IEEE, (2009), 1275-1278. doi: 10.1109/ISBI.2009.5193295.

[13]

J. Dutta, S. Ahn, C. Li, S. R. Cherry and R. M. Leahy, Joint l1 and total variation regularization for fluorescence molecular tomography, Physics in Medicine and Biology, 57 (2012), 1459-1476, URLhttp://www.ncbi.nlm.nih.gov/pubmed/22390906, PMID: 22390906.

[14]

H. Egger, M. Freiberger and M. Schlottbom, On forward and inverse models in fluorescence diffuse optical tomography, Inverse Problems and Imaging, 4 (2010), 411-427. doi: 10.3934/ipi.2010.4.411.

[15]

H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, vol. 375, Springer, 1996. doi: 10.1007/978-94-009-1740-8.

[16]

E. Esser, Applications of lagrangian-based alternating direction methods and connections to split bregman, CAM Report, 9 (2009), 31 pp.

[17]

T. J. Farrell, M. S. Patterson and B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo, Medical Physics, 19 (1992), 879-888, URLhttp://www.ncbi.nlm.nih.gov/pubmed/1518476, PMID: 1518476. doi: 10.1118/1.596777.

[18]

H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 1: l1 regularization, Optics Express, 18 (2010), 1854-1871. doi: 10.1364/OE.18.001854.

[19]

H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 2: total variation and l1 data fidelity, Optics Express, 18 (2010), 2894-2912. doi: 10.1364/OE.18.002894.

[20]

T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343. doi: 10.1137/080725891.

[21]

G. Golub and C. Van Loan, Matrix Computations, vol. 3, Johns Hopkins University Press, 1996.

[22]

P. Hansen and D. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14 (1993), 1487-1503. doi: 10.1137/0914086.

[23]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams and B. J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer, Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 11 (1994), 2727-2741, URLhttp://www.ncbi.nlm.nih.gov/pubmed/7931757, PMID: 7931757. doi: 10.1364/JOSAA.11.002727.

[24]

D. Hawrysz and E. Sevick-Muraca, Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents, Neoplasia (New York, NY), 2 (2000), 388 pp. doi: 10.1038/sj.neo.7900118.

[25]

J. Hebden, S. Arridge and D. Delpy, Optical imaging in medicine: I. experimental techniques, Physics in Medicine and Biology, 42 (1999), 825. doi: 10.1088/0031-9155/42/5/007.

[26]

G. Herman, A. Lent and S. Rowland, ART: Mathematics and applications: A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques, Journal of theoretical biology, 42 (1973), 1-32. doi: 10.1016/0022-5193(74)90135-0.

[27]

A. Ishimaru, Wave Propagation and Scattering in Random Media, vol. 2, IEEE press Piscataway, NJ, 1997.

[28]

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, vol. 160, Springer, 2004.

[29]

O. A. Ladyzhenskaia and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Academic Press, 1968.

[30]

V. A. Markel and J. C. Schotland, Inverse problem in optical diffusion tomography. II. role of boundary conditions, Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19 (2002), 558-566, URLhttp://www.ncbi.nlm.nih.gov/pubmed/11876321, PMID: 11876321. doi: 10.1364/JOSAA.19.000558.

[31]

A. Neumaier, Solving ill-conditioned and singular linear systems: A tutorial on regularization, SIAM Review, 40 (1998), 636-666. doi: 10.1137/S0036144597321909.

[32]

Y. Notay, An aggregation-based algebraic multigrid method, Electronic Transactions on Numerical Analysis, 37 (2010), 123-146.

[33]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.

[34]

W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991. doi: 10.1007/978-3-642-84455-3_77.

[35]

J. C. Schotland and V. A. Markel, Inverse scattering with diffusing waves, Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 18 (2001), 2767-2777, URLhttp://www.ncbi.nlm.nih.gov/pubmed/11688867, PMID: 11688867. doi: 10.1364/JOSAA.18.002767.

[36]

M. Schweiger, S. R. Arridge, M. Hiraoka and D. Delpy, The finite element method for the propagation of light in scattering media: Boundary and source conditions, Medical Physics, 22 (1995), 1779, URLhttp://adsabs.harvard.edu/abs/1995MedPh..22.1779S. doi: 10.1118/1.597634.

[37]

G. Wang, Y. Li and M. Jiang, Uniqueness theorems in bioluminescence tomography, Medical Physics, 31 (2004), 2289, URLhttp://link.aip.org/link/MPHYA6/v31/i8/p2289/s1&Agg=doi. doi: 10.1118/1.1766420.

[38]

Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248. doi: 10.1137/080724265.

[39]

R. Weissleder, C. Tung, U. Mahmood and A. Bogdanov, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nature Biotechnology, 17 (1999), 375-378.

[40]

C. Wu and X. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339. doi: 10.1137/090767558.

[1]

Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319

[2]

Alexey Penenko. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements. Inverse Problems and Imaging, 2020, 14 (5) : 757-782. doi: 10.3934/ipi.2020035

[3]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[4]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems and Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[5]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems and Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[6]

Qingsong Duan, Mengwei Xu, Yue Lu, Liwei Zhang. A smoothing augmented Lagrangian method for nonconvex, nonsmooth constrained programs and its applications to bilevel problems. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1241-1261. doi: 10.3934/jimo.2018094

[7]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[8]

Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2267-2281. doi: 10.3934/jimo.2019053

[9]

Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 1-9. doi: 10.3934/jimo.2018136

[10]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems and Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[11]

Lei Guo, Gao-Xi Li, Xinmin Yang. Global convergence of augmented Lagrangian method applied to mathematical program with switching constraints. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022114

[12]

Hongpeng Sun. An efficient augmented Lagrangian method with semismooth Newton solver for total generalized variation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022047

[13]

Fatemeh Bazikar, Saeed Ketabchi, Hossein Moosaei. Smooth augmented Lagrangian method for twin bounded support vector machine. Numerical Algebra, Control and Optimization, 2022, 12 (4) : 659-678. doi: 10.3934/naco.2021027

[14]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems and Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[15]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[16]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[17]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[18]

Florian Bossmann, Jianwei Ma. Enhanced image approximation using shifted rank-1 reconstruction. Inverse Problems and Imaging, 2020, 14 (2) : 267-290. doi: 10.3934/ipi.2020012

[19]

Razvan C. Fetecau, Mitchell Kovacic, Ihsan Topaloglu. Swarming in domains with boundaries: Approximation and regularization by nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1815-1842. doi: 10.3934/dcdsb.2018238

[20]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]