August  2014, 8(3): 831-844. doi: 10.3934/ipi.2014.8.831

Perfect radar pulse compression via unimodular fourier multipliers

1. 

University of Oulu, Sodankylä Geophysical Observatory, Tähteläntie 62, FI-99600 Sodankylä, Finland

2. 

University of Helsinki, Department of Mathematics and Statistics, Gustaf Hällströmin katu 2b, FI-00014 University of Helsinki

3. 

University of Oulu, Department of Physics, P.O.Box 3000, FI-90014 University of Oulu, Finland

Received  March 2014 Revised  April 2014 Published  August 2014

We propose a novel framework for studying radar pulse compression with continuous waveforms. Our methodology is based on the recent developments of the mathematical theory of comparison of measurements. First we show that a radar measurement of a time-independent but spatially distributed radar target is rigorously more informative than another one if the modulus of the Fourier transform of the radar code is greater than or equal to the modulus of the Fourier transform of the second radar code. We then motivate the study by spreading a Gaussian pulse into a longer pulse with smaller peak power and re-compressing the spread pulse into its original form. We then review the basic concepts of the theory and pose the conditions for statistically equivalent radar experiments. We show that such experiments can be constructed by spreading the radar pulses via multiplication of their Fourier transforms by unimodular functions. Finally, we show by analytical and numerical methods some examples of the spreading and re-compression of certain simple pulses.
Citation: Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems & Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831
References:
[1]

R. H. Barker, Group synchronizing of binary digital systems,, in Communication Theory (ed. W. Jackson), (1953), 273.   Google Scholar

[2]

D. Blackwell, Comparison of experiments,, in Proc. Second Berkeley Symposium on Math. Stat. Probab., (1950), 93.   Google Scholar

[3]

B. Damtie, M. Lehtinen, M. Orispää and J. Vierinen, Mismatched filtering of aperiodic quadriphase codes,, IEEE Trans. Inform. Theory, 54 (2008), 1742.  doi: 10.1109/TIT.2008.917655.  Google Scholar

[4]

B. Damtie and M. S. Lehtinen, Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement,, Ann. Geophys., 27 (2009), 797.  doi: 10.5194/angeo-27-797-2009.  Google Scholar

[5]

M. J. E. Golay, Complementary series,, IRE Trans., IT-7 (1961), 82.   Google Scholar

[6]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,, $7^{th}$ edition, (2007).   Google Scholar

[7]

A. Huuskonen and M. S. Lehtinen, The accuracy of incoherent scatter measurements: Error estimates valid for high signal levels,, J. Atmos. Sol.-Terr. Phy., 58 (1996), 453.  doi: 10.1016/0021-9169(95)00048-8.  Google Scholar

[8]

K. E. Iverson, A Programming Language,, New York: Wiley, (1962).   Google Scholar

[9]

J. R. Klauder, A. C. Price, S. Darlington and W. J. Albersheim, The theory and design of chirp radars,, The Bell System Technical Journal, 39 (1960), 745.  doi: 10.1002/j.1538-7305.1960.tb03942.x.  Google Scholar

[10]

D. Knuth, Two notes on notation,, Amer. Math. Monthly, 99 (1992), 403.  doi: 10.2307/2325085.  Google Scholar

[11]

L. Le Cam, Sufficiency and approximate sufficiency,, Ann. Math. Statist., 35 (1964), 1419.  doi: 10.1214/aoms/1177700372.  Google Scholar

[12]

L. Le Cam, Asymptotic Methods in Statistical Decision Theory,, Springer Series in Statistics, (1986).  doi: 10.1007/978-1-4612-4946-7.  Google Scholar

[13]

M. S. Lehtinen, On optimization of incoherent scatter measurements,, Adv. Space Res., 9 (1989), 133.  doi: 10.1016/0273-1177(89)90351-7.  Google Scholar

[14]

M. S. Lehtinen, B. Damtie and T. Nygrén, Optimal binary phase codes and sidelobe-free decoding filters with application to incoherent scatter radar,, Ann. Geophys., 22 (2004), 1623.  doi: 10.5194/angeo-22-1623-2004.  Google Scholar

[15]

M. S. Lehtinen, I. I. Virtanen and J. Vierinen, Fast comparison of IS radar code sequences for lag profile inversion,, Ann. Geophys., 26 (2008), 2291.  doi: 10.5194/angeo-26-2291-2008.  Google Scholar

[16]

M. Lehtinen, B. Damtie, P. Piiroinen and M. Orispää, Perfect and almost perfect pulse compression codes for range spread radar targets,, Inverse Problems and Imaging, 3 (2009), 465.  doi: 10.3934/ipi.2009.3.465.  Google Scholar

[17]

M. S. Lehtinen and B. Damtie, Radar baud length optimisation of spatially incoherent time-independent targets,, J. Atmos. Sol.-Terr. Phy., 105-106 (2013), 105.  doi: 10.1016/j.jastp.2012.10.010.  Google Scholar

[18]

N. Levanon and E. Mozeson, Radar Signals,, John Wiley & Sons, (2004).  doi: 10.1002/0471663085.  Google Scholar

[19]

P. Piiroinen, Statistical measurements, experiments and applications,, Ann. Acad. Sci. Fenn. Math. Diss. No., 143 (2005).   Google Scholar

[20]

J. Pirttilä, M. S. Lehtinen, A. Huuskonen and M. Markkanen, A proposed solution to the range-doppler dilemma of weather radar measurements by using the SMPRF codes, practical results, and a comparison with operational measurements,, J. Appl. Meteor., 44 (2005), 1375.  doi: 10.1175/JAM2288.1.  Google Scholar

[21]

L. Roininen and M. S. Lehtinen, Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions,, Inverse Problems and Imaging, 7 (2013), 649.  doi: 10.3934/ipi.2013.7.649.  Google Scholar

[22]

H. H. Schaefer, Banach Lattices and Positive Operators,, Die Grundlehren der mathematischen Wissenschaften, (1974).   Google Scholar

[23]

C. E. Shannon, Communication in the presence of noise,, Proc. I.R.E., 37 (1949), 10.   Google Scholar

[24]

A. N. Shiryaev and V. G. Spokoiny, Statistical Experiments and Decisions,, Advanced Series on Statistical Science & Applied Probability, (2000).  doi: 10.1142/9789812779243.  Google Scholar

[25]

M. I. Skolnik, Radar Handbook,, $2^{nd}$ edition, (1990).   Google Scholar

[26]

E. Torgersen, Comparison of Statistical Experiments,, Encyclopedia of Mathematics and its Applications, (1991).  doi: 10.1017/CBO9780511666353.  Google Scholar

[27]

H. L. van Trees, Detection, Estimation and Modulation theory, part III,, John Wiley and Sons, (1971).   Google Scholar

[28]

J. Vierinen, On Statistical Theory of Radar Measurements,, Ph.D. Dissertation, (2012).   Google Scholar

[29]

A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces,, Springer-Verlag, (1997).  doi: 10.1007/978-3-642-60637-3.  Google Scholar

show all references

References:
[1]

R. H. Barker, Group synchronizing of binary digital systems,, in Communication Theory (ed. W. Jackson), (1953), 273.   Google Scholar

[2]

D. Blackwell, Comparison of experiments,, in Proc. Second Berkeley Symposium on Math. Stat. Probab., (1950), 93.   Google Scholar

[3]

B. Damtie, M. Lehtinen, M. Orispää and J. Vierinen, Mismatched filtering of aperiodic quadriphase codes,, IEEE Trans. Inform. Theory, 54 (2008), 1742.  doi: 10.1109/TIT.2008.917655.  Google Scholar

[4]

B. Damtie and M. S. Lehtinen, Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement,, Ann. Geophys., 27 (2009), 797.  doi: 10.5194/angeo-27-797-2009.  Google Scholar

[5]

M. J. E. Golay, Complementary series,, IRE Trans., IT-7 (1961), 82.   Google Scholar

[6]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,, $7^{th}$ edition, (2007).   Google Scholar

[7]

A. Huuskonen and M. S. Lehtinen, The accuracy of incoherent scatter measurements: Error estimates valid for high signal levels,, J. Atmos. Sol.-Terr. Phy., 58 (1996), 453.  doi: 10.1016/0021-9169(95)00048-8.  Google Scholar

[8]

K. E. Iverson, A Programming Language,, New York: Wiley, (1962).   Google Scholar

[9]

J. R. Klauder, A. C. Price, S. Darlington and W. J. Albersheim, The theory and design of chirp radars,, The Bell System Technical Journal, 39 (1960), 745.  doi: 10.1002/j.1538-7305.1960.tb03942.x.  Google Scholar

[10]

D. Knuth, Two notes on notation,, Amer. Math. Monthly, 99 (1992), 403.  doi: 10.2307/2325085.  Google Scholar

[11]

L. Le Cam, Sufficiency and approximate sufficiency,, Ann. Math. Statist., 35 (1964), 1419.  doi: 10.1214/aoms/1177700372.  Google Scholar

[12]

L. Le Cam, Asymptotic Methods in Statistical Decision Theory,, Springer Series in Statistics, (1986).  doi: 10.1007/978-1-4612-4946-7.  Google Scholar

[13]

M. S. Lehtinen, On optimization of incoherent scatter measurements,, Adv. Space Res., 9 (1989), 133.  doi: 10.1016/0273-1177(89)90351-7.  Google Scholar

[14]

M. S. Lehtinen, B. Damtie and T. Nygrén, Optimal binary phase codes and sidelobe-free decoding filters with application to incoherent scatter radar,, Ann. Geophys., 22 (2004), 1623.  doi: 10.5194/angeo-22-1623-2004.  Google Scholar

[15]

M. S. Lehtinen, I. I. Virtanen and J. Vierinen, Fast comparison of IS radar code sequences for lag profile inversion,, Ann. Geophys., 26 (2008), 2291.  doi: 10.5194/angeo-26-2291-2008.  Google Scholar

[16]

M. Lehtinen, B. Damtie, P. Piiroinen and M. Orispää, Perfect and almost perfect pulse compression codes for range spread radar targets,, Inverse Problems and Imaging, 3 (2009), 465.  doi: 10.3934/ipi.2009.3.465.  Google Scholar

[17]

M. S. Lehtinen and B. Damtie, Radar baud length optimisation of spatially incoherent time-independent targets,, J. Atmos. Sol.-Terr. Phy., 105-106 (2013), 105.  doi: 10.1016/j.jastp.2012.10.010.  Google Scholar

[18]

N. Levanon and E. Mozeson, Radar Signals,, John Wiley & Sons, (2004).  doi: 10.1002/0471663085.  Google Scholar

[19]

P. Piiroinen, Statistical measurements, experiments and applications,, Ann. Acad. Sci. Fenn. Math. Diss. No., 143 (2005).   Google Scholar

[20]

J. Pirttilä, M. S. Lehtinen, A. Huuskonen and M. Markkanen, A proposed solution to the range-doppler dilemma of weather radar measurements by using the SMPRF codes, practical results, and a comparison with operational measurements,, J. Appl. Meteor., 44 (2005), 1375.  doi: 10.1175/JAM2288.1.  Google Scholar

[21]

L. Roininen and M. S. Lehtinen, Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions,, Inverse Problems and Imaging, 7 (2013), 649.  doi: 10.3934/ipi.2013.7.649.  Google Scholar

[22]

H. H. Schaefer, Banach Lattices and Positive Operators,, Die Grundlehren der mathematischen Wissenschaften, (1974).   Google Scholar

[23]

C. E. Shannon, Communication in the presence of noise,, Proc. I.R.E., 37 (1949), 10.   Google Scholar

[24]

A. N. Shiryaev and V. G. Spokoiny, Statistical Experiments and Decisions,, Advanced Series on Statistical Science & Applied Probability, (2000).  doi: 10.1142/9789812779243.  Google Scholar

[25]

M. I. Skolnik, Radar Handbook,, $2^{nd}$ edition, (1990).   Google Scholar

[26]

E. Torgersen, Comparison of Statistical Experiments,, Encyclopedia of Mathematics and its Applications, (1991).  doi: 10.1017/CBO9780511666353.  Google Scholar

[27]

H. L. van Trees, Detection, Estimation and Modulation theory, part III,, John Wiley and Sons, (1971).   Google Scholar

[28]

J. Vierinen, On Statistical Theory of Radar Measurements,, Ph.D. Dissertation, (2012).   Google Scholar

[29]

A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces,, Springer-Verlag, (1997).  doi: 10.1007/978-3-642-60637-3.  Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

[Back to Top]