\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rellich type theorems for unbounded domains

Abstract Related Papers Cited by
  • We give several generalizations of Rellich's classical uniqueness theorem to unbounded domains. We give a natural half-space generalization for super-exponentially decaying inhomogeneities using real variable techniques. We also prove under super-exponential decay a discrete generalization where the inhomogeneity only needs to vanish in a suitable cone.
        The more traditional complex variable techniques are used to prove the half-space result again, but with less exponential decay, and a variant with polynomial decay, but with supports exponentially thin at infinity. As an application, we prove the discreteness of non-scattering energies for non-compactly supported potentials with suitable asymptotic behaviours and supports.
    Mathematics Subject Classification: Primary: 35P25, 35J05; Secondary: 35R30, 81U40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Adams, Capacity and compact imbeddings, Journal of Mathematics and Mechanics, 19 (1970), 923-929.

    [2]

    R. Adams and J. Fournier, Sobolev Spaces, Pure and Applied Mathematics Series, Elsevier, 2003.

    [3]

    S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 2 (1975), 151-218.

    [4]

    S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Anal. Math., 30 (1976), 1-38.doi: 10.1007/BF02786703.

    [5]

    E. Blåsten, L. Päivärinta and J. Sylvester, Corners always scatter, Commun. Math. Phys., 331 (2014), 725-753.doi: 10.1007/s00220-014-2030-0.

    [6]

    F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.doi: 10.1137/090769338.

    [7]

    F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, in Inverse Problems and Applications, Inside Out II (ed. G. Uhlmann) MSRI Publications, Cambridge University Press, 60 (2013), 529-580.

    [8]

    F. Cakoni and H. Haddar, Transmission eigenvalues, Inverse Problems, 29 (2013), 100201, 3PP.doi: 10.1088/0266-5611/29/10/100201.

    [9]

    D. Colton, A. Kirsch and L. Päivärinta, Far field patterns for acoustic waves in an inhomogeneous medium, SIAM J. Math. Anal., 20 (1989), 1472-1483.doi: 10.1137/0520096.

    [10]

    D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93, Springer, 2013.doi: 10.1007/978-1-4614-4942-3.

    [11]

    D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math., 41 (1988), 97-125.doi: 10.1093/qjmam/41.1.97.

    [12]

    D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Probl. Imaging, 1 (2007), 13-28.doi: 10.3934/ipi.2007.1.13.

    [13]

    P. G. Grinevich and S. V. Manakov, The inverse scattering problem for the two-dimensional Schrödinger operator, the $\overline\partial$-method and non-linear equations, Funct. Anal. Appl., 20 (1986), 14-24.

    [14]

    P. G. Grinevich and R. G. Novikov, Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials, Commun. Math. Phys., 174 (1995), 409-446.doi: 10.1007/BF02099609.

    [15]

    K. Hickmann, Interior transmission eigenvalue problem with refractive index having $C^2$-transition to the background medium, Appl. Anal., 91 (2012), 1675-1690.doi: 10.1080/00036811.2011.577741.

    [16]

    M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, SIAM J. Math. Anal., 42 (2010), 2965-2986.doi: 10.1137/100793748.

    [17]

    L. Hörmander, Lower bounds at infinity for solutions of differential equations with constant coefficients, Israel J. Math., 16 (1973), 103-116.doi: 10.1007/BF02761975.

    [18]

    L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Classics in Mathematics, Springer, 2005.

    [19]

    H. Isozaki and H. Morioka, A Rellich type theorem for discrete Schrödinger operators, Inverse Probl. Imaging, 8 (2014), 475-489.doi: 10.3934/ipi.2014.8.475.

    [20]

    T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, 1995.

    [21]

    A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.doi: 10.1093/imamat/37.3.213.

    [22]

    E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104003, 19PP.doi: 10.1088/0266-5611/29/10/104003.

    [23]

    W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients, Trans. Amer. Math. Soc., 123 (1966), 449-459.doi: 10.1090/S0002-9947-1966-0197951-7.

    [24]

    W. Littman, Decay at infinity of solutions to partial differential equations; removal of the curvature assumption, Israel J. Math., 8 (1970), 403-407.doi: 10.1007/BF02798687.

    [25]

    W. Littman, Maximal rates of decay of solutions of partial differential equations, Arch. Ration. Mech. Anal., 37 (1970), 11-20.

    [26]

    M. Murata, A theorem of Liouville type for partial differential equations with constant coefficients, Journal of the Faculty of Science, the University of Tokyo, Section IA Mathematics, 21 (1974), 395-404.

    [27]

    M. Murata, Asymptotic behaviors at infinity of solutions to certain partial differential equations, Journal of the Faculty of Science, the University of Tokyo, Section IA Mathematics, 23 (1976), 107-148.

    [28]

    R. G. Newton, Construction of potentials from the phase shifts at fixed energy, J. Math. Phys., 3 (1962), 75-82.doi: 10.1063/1.1703790.

    [29]

    L. Päivärinta, M. Salo and G. Uhlmann, Inverse scattering for the magnetic Schrödinger operator, J. Funct. Anal., 259 (2010), 1771-1798.doi: 10.1016/j.jfa.2010.06.002.

    [30]

    L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753.doi: 10.1137/070697525.

    [31]

    M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academid Press, 1975.

    [32]

    T. Regge, Introduction to complex orbital moments, Il Nuovo Cimento, 14 (1959), 951-976.doi: 10.1007/BF02728177.

    [33]

    F. Rellich, Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ im unendlichen Gebieten, Jahresber. Dtsch. Math.-Ver., 53 (1943), 57-65.

    [34]

    L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28PP.doi: 10.1088/0266-5611/29/10/104001.

    [35]

    W. Rudin, Real and Complex Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1986.

    [36]

    M. Ruzhansky and V. Turunen, Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics, Pseudo-Differential Operators, Theory and Applications, 2, Birkhäuser, 2010.doi: 10.1007/978-3-7643-8514-9.

    [37]

    P. C. Sabatier, Asymptotic properties of the potentials in the inverse-scattering problem at fixed energy, J. Math. Phys., 7 (1966), 1515-1531.doi: 10.1063/1.1705062.

    [38]

    V. Serov, Transmission eigenvalues for non-regular cases, Commun. Math. Anal., 14 (2013), 129-142.

    [39]

    V. Serov and J. Sylvester, Transmission eigenvalues for degenerate and singular cases, Inverse Problems, 28 (2012), 065004, 8PP.doi: 10.1088/0266-5611/28/6/065004.

    [40]

    W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators, Appl. Anal., 80 (2001), 525-556.doi: 10.1080/00036810108841007.

    [41]

    J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.doi: 10.1137/110836420.

    [42]

    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.doi: 10.2307/1971291.

    [43]

    F. Trèves, Differential polynomials and decay at infinity, Bull. Amer. Math. Soc. (N.S.), 66 (1960), 184-186.doi: 10.1090/S0002-9904-1960-10423-5.

    [44]

    I. N. Vekua, Metaharmonic functions, Trudy Tbilisskogo matematicheskogo instituta, 12 (1943), 105-174.

    [45]

    E. V. Vesalainen, Transmission eigenvalues for a class of non-compactly supported potentials, Inverse Problems, 29 (2013), 104006, 11PP.doi: 10.1088/0266-5611/29/10/104006.

    [46]

    M. W. Wong, An Introduction to Pseudo-Differential Operators, World Scientific, 1999.doi: 10.1142/4047.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return