August  2014, 8(3): 865-883. doi: 10.3934/ipi.2014.8.865

Rellich type theorems for unbounded domains

1. 

Department of Mathematics and Statistics, P.O. Box 68 (Gustaf Hallstromin katu 2b), FI-00014 University of Helsinki, Finland

Received  January 2014 Revised  May 2014 Published  August 2014

We give several generalizations of Rellich's classical uniqueness theorem to unbounded domains. We give a natural half-space generalization for super-exponentially decaying inhomogeneities using real variable techniques. We also prove under super-exponential decay a discrete generalization where the inhomogeneity only needs to vanish in a suitable cone.
    The more traditional complex variable techniques are used to prove the half-space result again, but with less exponential decay, and a variant with polynomial decay, but with supports exponentially thin at infinity. As an application, we prove the discreteness of non-scattering energies for non-compactly supported potentials with suitable asymptotic behaviours and supports.
Citation: Esa V. Vesalainen. Rellich type theorems for unbounded domains. Inverse Problems & Imaging, 2014, 8 (3) : 865-883. doi: 10.3934/ipi.2014.8.865
References:
[1]

R. Adams, Capacity and compact imbeddings,, Journal of Mathematics and Mechanics, 19 (1970), 923.   Google Scholar

[2]

R. Adams and J. Fournier, Sobolev Spaces,, Pure and Applied Mathematics Series, (2003).   Google Scholar

[3]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 2 (1975), 151.   Google Scholar

[4]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics,, J. Anal. Math., 30 (1976), 1.  doi: 10.1007/BF02786703.  Google Scholar

[5]

E. Blåsten, L. Päivärinta and J. Sylvester, Corners always scatter,, Commun. Math. Phys., 331 (2014), 725.  doi: 10.1007/s00220-014-2030-0.  Google Scholar

[6]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues,, SIAM J. Math. Anal., 42 (2010), 237.  doi: 10.1137/090769338.  Google Scholar

[7]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory,, in Inverse Problems and Applications, 60 (2013), 529.   Google Scholar

[8]

F. Cakoni and H. Haddar, Transmission eigenvalues,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/10/100201.  Google Scholar

[9]

D. Colton, A. Kirsch and L. Päivärinta, Far field patterns for acoustic waves in an inhomogeneous medium,, SIAM J. Math. Anal., 20 (1989), 1472.  doi: 10.1137/0520096.  Google Scholar

[10]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[11]

D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium,, Quart. J. Mech. Appl. Math., 41 (1988), 97.  doi: 10.1093/qjmam/41.1.97.  Google Scholar

[12]

D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem,, Inverse Probl. Imaging, 1 (2007), 13.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[13]

P. G. Grinevich and S. V. Manakov, The inverse scattering problem for the two-dimensional Schrödinger operator, the $\overline\partial$-method and non-linear equations,, Funct. Anal. Appl., 20 (1986), 14.   Google Scholar

[14]

P. G. Grinevich and R. G. Novikov, Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials,, Commun. Math. Phys., 174 (1995), 409.  doi: 10.1007/BF02099609.  Google Scholar

[15]

K. Hickmann, Interior transmission eigenvalue problem with refractive index having $C^2$-transition to the background medium,, Appl. Anal., 91 (2012), 1675.  doi: 10.1080/00036811.2011.577741.  Google Scholar

[16]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients,, SIAM J. Math. Anal., 42 (2010), 2965.  doi: 10.1137/100793748.  Google Scholar

[17]

L. Hörmander, Lower bounds at infinity for solutions of differential equations with constant coefficients,, Israel J. Math., 16 (1973), 103.  doi: 10.1007/BF02761975.  Google Scholar

[18]

L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients,, Classics in Mathematics, (2005).   Google Scholar

[19]

H. Isozaki and H. Morioka, A Rellich type theorem for discrete Schrödinger operators,, Inverse Probl. Imaging, 8 (2014), 475.  doi: 10.3934/ipi.2014.8.475.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics, (1995).   Google Scholar

[21]

A. Kirsch, The denseness of the far field patterns for the transmission problem,, IMA J. Appl. Math., 37 (1986), 213.  doi: 10.1093/imamat/37.3.213.  Google Scholar

[22]

E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/10/104003.  Google Scholar

[23]

W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients,, Trans. Amer. Math. Soc., 123 (1966), 449.  doi: 10.1090/S0002-9947-1966-0197951-7.  Google Scholar

[24]

W. Littman, Decay at infinity of solutions to partial differential equations; removal of the curvature assumption,, Israel J. Math., 8 (1970), 403.  doi: 10.1007/BF02798687.  Google Scholar

[25]

W. Littman, Maximal rates of decay of solutions of partial differential equations,, Arch. Ration. Mech. Anal., 37 (1970), 11.   Google Scholar

[26]

M. Murata, A theorem of Liouville type for partial differential equations with constant coefficients,, Journal of the Faculty of Science, 21 (1974), 395.   Google Scholar

[27]

M. Murata, Asymptotic behaviors at infinity of solutions to certain partial differential equations,, Journal of the Faculty of Science, 23 (1976), 107.   Google Scholar

[28]

R. G. Newton, Construction of potentials from the phase shifts at fixed energy,, J. Math. Phys., 3 (1962), 75.  doi: 10.1063/1.1703790.  Google Scholar

[29]

L. Päivärinta, M. Salo and G. Uhlmann, Inverse scattering for the magnetic Schrödinger operator,, J. Funct. Anal., 259 (2010), 1771.  doi: 10.1016/j.jfa.2010.06.002.  Google Scholar

[30]

L. Päivärinta and J. Sylvester, Transmission eigenvalues,, SIAM J. Math. Anal., 40 (2008), 738.  doi: 10.1137/070697525.  Google Scholar

[31]

M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness,, Academid Press, (1975).   Google Scholar

[32]

T. Regge, Introduction to complex orbital moments,, Il Nuovo Cimento, 14 (1959), 951.  doi: 10.1007/BF02728177.  Google Scholar

[33]

F. Rellich, Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ im unendlichen Gebieten,, Jahresber. Dtsch. Math.-Ver., 53 (1943), 57.   Google Scholar

[34]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/10/104001.  Google Scholar

[35]

W. Rudin, Real and Complex Analysis,, International Series in Pure and Applied Mathematics, (1986).   Google Scholar

[36]

M. Ruzhansky and V. Turunen, Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics,, Pseudo-Differential Operators, (2010).  doi: 10.1007/978-3-7643-8514-9.  Google Scholar

[37]

P. C. Sabatier, Asymptotic properties of the potentials in the inverse-scattering problem at fixed energy,, J. Math. Phys., 7 (1966), 1515.  doi: 10.1063/1.1705062.  Google Scholar

[38]

V. Serov, Transmission eigenvalues for non-regular cases,, Commun. Math. Anal., 14 (2013), 129.   Google Scholar

[39]

V. Serov and J. Sylvester, Transmission eigenvalues for degenerate and singular cases,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/6/065004.  Google Scholar

[40]

W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Appl. Anal., 80 (2001), 525.  doi: 10.1080/00036810108841007.  Google Scholar

[41]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators,, SIAM J. Math. Anal., 44 (2012), 341.  doi: 10.1137/110836420.  Google Scholar

[42]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[43]

F. Trèves, Differential polynomials and decay at infinity,, Bull. Amer. Math. Soc. (N.S.), 66 (1960), 184.  doi: 10.1090/S0002-9904-1960-10423-5.  Google Scholar

[44]

I. N. Vekua, Metaharmonic functions,, Trudy Tbilisskogo matematicheskogo instituta, 12 (1943), 105.   Google Scholar

[45]

E. V. Vesalainen, Transmission eigenvalues for a class of non-compactly supported potentials,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/10/104006.  Google Scholar

[46]

M. W. Wong, An Introduction to Pseudo-Differential Operators,, World Scientific, (1999).  doi: 10.1142/4047.  Google Scholar

show all references

References:
[1]

R. Adams, Capacity and compact imbeddings,, Journal of Mathematics and Mechanics, 19 (1970), 923.   Google Scholar

[2]

R. Adams and J. Fournier, Sobolev Spaces,, Pure and Applied Mathematics Series, (2003).   Google Scholar

[3]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 2 (1975), 151.   Google Scholar

[4]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics,, J. Anal. Math., 30 (1976), 1.  doi: 10.1007/BF02786703.  Google Scholar

[5]

E. Blåsten, L. Päivärinta and J. Sylvester, Corners always scatter,, Commun. Math. Phys., 331 (2014), 725.  doi: 10.1007/s00220-014-2030-0.  Google Scholar

[6]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues,, SIAM J. Math. Anal., 42 (2010), 237.  doi: 10.1137/090769338.  Google Scholar

[7]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory,, in Inverse Problems and Applications, 60 (2013), 529.   Google Scholar

[8]

F. Cakoni and H. Haddar, Transmission eigenvalues,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/10/100201.  Google Scholar

[9]

D. Colton, A. Kirsch and L. Päivärinta, Far field patterns for acoustic waves in an inhomogeneous medium,, SIAM J. Math. Anal., 20 (1989), 1472.  doi: 10.1137/0520096.  Google Scholar

[10]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[11]

D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium,, Quart. J. Mech. Appl. Math., 41 (1988), 97.  doi: 10.1093/qjmam/41.1.97.  Google Scholar

[12]

D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem,, Inverse Probl. Imaging, 1 (2007), 13.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[13]

P. G. Grinevich and S. V. Manakov, The inverse scattering problem for the two-dimensional Schrödinger operator, the $\overline\partial$-method and non-linear equations,, Funct. Anal. Appl., 20 (1986), 14.   Google Scholar

[14]

P. G. Grinevich and R. G. Novikov, Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials,, Commun. Math. Phys., 174 (1995), 409.  doi: 10.1007/BF02099609.  Google Scholar

[15]

K. Hickmann, Interior transmission eigenvalue problem with refractive index having $C^2$-transition to the background medium,, Appl. Anal., 91 (2012), 1675.  doi: 10.1080/00036811.2011.577741.  Google Scholar

[16]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients,, SIAM J. Math. Anal., 42 (2010), 2965.  doi: 10.1137/100793748.  Google Scholar

[17]

L. Hörmander, Lower bounds at infinity for solutions of differential equations with constant coefficients,, Israel J. Math., 16 (1973), 103.  doi: 10.1007/BF02761975.  Google Scholar

[18]

L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients,, Classics in Mathematics, (2005).   Google Scholar

[19]

H. Isozaki and H. Morioka, A Rellich type theorem for discrete Schrödinger operators,, Inverse Probl. Imaging, 8 (2014), 475.  doi: 10.3934/ipi.2014.8.475.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics, (1995).   Google Scholar

[21]

A. Kirsch, The denseness of the far field patterns for the transmission problem,, IMA J. Appl. Math., 37 (1986), 213.  doi: 10.1093/imamat/37.3.213.  Google Scholar

[22]

E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/10/104003.  Google Scholar

[23]

W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients,, Trans. Amer. Math. Soc., 123 (1966), 449.  doi: 10.1090/S0002-9947-1966-0197951-7.  Google Scholar

[24]

W. Littman, Decay at infinity of solutions to partial differential equations; removal of the curvature assumption,, Israel J. Math., 8 (1970), 403.  doi: 10.1007/BF02798687.  Google Scholar

[25]

W. Littman, Maximal rates of decay of solutions of partial differential equations,, Arch. Ration. Mech. Anal., 37 (1970), 11.   Google Scholar

[26]

M. Murata, A theorem of Liouville type for partial differential equations with constant coefficients,, Journal of the Faculty of Science, 21 (1974), 395.   Google Scholar

[27]

M. Murata, Asymptotic behaviors at infinity of solutions to certain partial differential equations,, Journal of the Faculty of Science, 23 (1976), 107.   Google Scholar

[28]

R. G. Newton, Construction of potentials from the phase shifts at fixed energy,, J. Math. Phys., 3 (1962), 75.  doi: 10.1063/1.1703790.  Google Scholar

[29]

L. Päivärinta, M. Salo and G. Uhlmann, Inverse scattering for the magnetic Schrödinger operator,, J. Funct. Anal., 259 (2010), 1771.  doi: 10.1016/j.jfa.2010.06.002.  Google Scholar

[30]

L. Päivärinta and J. Sylvester, Transmission eigenvalues,, SIAM J. Math. Anal., 40 (2008), 738.  doi: 10.1137/070697525.  Google Scholar

[31]

M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness,, Academid Press, (1975).   Google Scholar

[32]

T. Regge, Introduction to complex orbital moments,, Il Nuovo Cimento, 14 (1959), 951.  doi: 10.1007/BF02728177.  Google Scholar

[33]

F. Rellich, Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ im unendlichen Gebieten,, Jahresber. Dtsch. Math.-Ver., 53 (1943), 57.   Google Scholar

[34]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/10/104001.  Google Scholar

[35]

W. Rudin, Real and Complex Analysis,, International Series in Pure and Applied Mathematics, (1986).   Google Scholar

[36]

M. Ruzhansky and V. Turunen, Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics,, Pseudo-Differential Operators, (2010).  doi: 10.1007/978-3-7643-8514-9.  Google Scholar

[37]

P. C. Sabatier, Asymptotic properties of the potentials in the inverse-scattering problem at fixed energy,, J. Math. Phys., 7 (1966), 1515.  doi: 10.1063/1.1705062.  Google Scholar

[38]

V. Serov, Transmission eigenvalues for non-regular cases,, Commun. Math. Anal., 14 (2013), 129.   Google Scholar

[39]

V. Serov and J. Sylvester, Transmission eigenvalues for degenerate and singular cases,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/6/065004.  Google Scholar

[40]

W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Appl. Anal., 80 (2001), 525.  doi: 10.1080/00036810108841007.  Google Scholar

[41]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators,, SIAM J. Math. Anal., 44 (2012), 341.  doi: 10.1137/110836420.  Google Scholar

[42]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[43]

F. Trèves, Differential polynomials and decay at infinity,, Bull. Amer. Math. Soc. (N.S.), 66 (1960), 184.  doi: 10.1090/S0002-9904-1960-10423-5.  Google Scholar

[44]

I. N. Vekua, Metaharmonic functions,, Trudy Tbilisskogo matematicheskogo instituta, 12 (1943), 105.   Google Scholar

[45]

E. V. Vesalainen, Transmission eigenvalues for a class of non-compactly supported potentials,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/10/104006.  Google Scholar

[46]

M. W. Wong, An Introduction to Pseudo-Differential Operators,, World Scientific, (1999).  doi: 10.1142/4047.  Google Scholar

[1]

Yanfang Gao, Zhiyong Wang. Minimal mass non-scattering solutions of the focusing L2-critical Hartree equations with radial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1979-2007. doi: 10.3934/dcds.2017084

[2]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[3]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems & Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[4]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[5]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

[6]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[7]

Rodica Toader. Scattering in domains with many small obstacles. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 321-338. doi: 10.3934/dcds.1998.4.321

[8]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[9]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[10]

Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 387-396. doi: 10.3934/dcds.2004.10.387

[11]

Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems & Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663

[12]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

[13]

Victor Isakov. On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data. Inverse Problems & Imaging, 2008, 2 (1) : 151-165. doi: 10.3934/ipi.2008.2.151

[14]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[15]

Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory. Networks & Heterogeneous Media, 2018, 13 (2) : 191-215. doi: 10.3934/nhm.2018009

[16]

Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995

[17]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[18]

Deyue Zhang, Yukun Guo. Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory. Electronic Research Archive, , () : -. doi: 10.3934/era.2020110

[19]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[20]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]