August  2014, 8(3): 885-900. doi: 10.3934/ipi.2014.8.885

Shape reconstruction from images: Pixel fields and Fourier transform

1. 

Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland, Finland

Received  December 2013 Revised  April 2014 Published  August 2014

We discuss shape reconstruction methods for data presented in various image spaces. We demonstrate the usefulness of the Fourier transform in transferring image data and shape model projections to a domain more suitable for shape inversion. Using boundary contours in images to represent minimal information, we present uniqueness results for shapes recoverable from interferometric and range-Doppler data. We present applications of our methods to adaptive optics, interferometry, and range-Doppler images.
Citation: Matti Viikinkoski, Mikko Kaasalainen. Shape reconstruction from images: Pixel fields and Fourier transform. Inverse Problems & Imaging, 2014, 8 (3) : 885-900. doi: 10.3934/ipi.2014.8.885
References:
[1]

B. Bertotti, P. Farinella and D. Vokrouhlický, Physics of the Solar System,, Astrophysics and Space Science Library (Kluwer), 293 (2003). doi: 10.1007/978-94-010-0233-2.

[2]

B. Carry, C. Dumas, M. Kaasalainen and 9 colleagues, Physical properties of 2 Pallas,, Icarus, 205 (2010), 460. doi: 10.1016/j.icarus.2009.08.007.

[3]

B. Carry, M. Kaasalainen, W. J. Merline and 12 colleagues, Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia,, Planet. Space Sci., 66 (2012), 200. doi: 10.1016/j.pss.2011.12.018.

[4]

M. Delbó, The Nature of Near-Earth Asteroids from the Study of Their Thermal Infrared Emission,, Ph.D. thesis, (2004).

[5]

M. Kaasalainen, L. Lamberg, K. Lumme and E. Bowell, Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes,, Astron. Astrophys., 259 (1992), 318.

[6]

M. Kaasalainen, J. Torppa and K. Muinonen, Optimization methpds for asteroid lightcurves inversion. II. The complete inverse problem,, Icarus, 153 (2001), 37. doi: 10.1006/icar.2001.6674.

[7]

M. Kaasalainen and L. Lamberg, Inverse problems of generalized projection operators,, Inverse Problems, 22 (2006), 749. doi: 10.1088/0266-5611/22/3/002.

[8]

M. Kaasalainen, Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction,, Inverse Problems and Imaging, 5 (2011), 37. doi: 10.3934/ipi.2011.5.37.

[9]

M. Kaasalainen and M. Viikinkoski, Shape reconstruction of irregular bodies with multiple complementary data sources,, Astron. Astrophys, 543 (2012). doi: 10.1051/0004-6361/201219267.

[10]

M. Kaasalainen and H. Nortunen, Compact YORP formulation and stability analysis,, Astron. Astrophys, 558 (2013). doi: 10.1051/0004-6361/201322221.

[11]

D. Nesvorný and D. Vokrouhlický, Analytic theory for the Yarkovsky-O'Keefe-Radzievski-Paddack effect on obliquity,, Astron. J., 136 (2008), 291. doi: 10.1088/0004-6256/136/1/291.

[12]

S. J. Ostro, R. S. Hudson, L. Benner and 4 colleagues, Asteroid Radar Astronomy,, in Asteroids III, (2002).

[13]

A. R. Thompson, J. M. Moran and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy,, Interferometry and Synthesis in Radio Astronomy, (2007). doi: 10.1002/9783527617845.

show all references

References:
[1]

B. Bertotti, P. Farinella and D. Vokrouhlický, Physics of the Solar System,, Astrophysics and Space Science Library (Kluwer), 293 (2003). doi: 10.1007/978-94-010-0233-2.

[2]

B. Carry, C. Dumas, M. Kaasalainen and 9 colleagues, Physical properties of 2 Pallas,, Icarus, 205 (2010), 460. doi: 10.1016/j.icarus.2009.08.007.

[3]

B. Carry, M. Kaasalainen, W. J. Merline and 12 colleagues, Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia,, Planet. Space Sci., 66 (2012), 200. doi: 10.1016/j.pss.2011.12.018.

[4]

M. Delbó, The Nature of Near-Earth Asteroids from the Study of Their Thermal Infrared Emission,, Ph.D. thesis, (2004).

[5]

M. Kaasalainen, L. Lamberg, K. Lumme and E. Bowell, Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes,, Astron. Astrophys., 259 (1992), 318.

[6]

M. Kaasalainen, J. Torppa and K. Muinonen, Optimization methpds for asteroid lightcurves inversion. II. The complete inverse problem,, Icarus, 153 (2001), 37. doi: 10.1006/icar.2001.6674.

[7]

M. Kaasalainen and L. Lamberg, Inverse problems of generalized projection operators,, Inverse Problems, 22 (2006), 749. doi: 10.1088/0266-5611/22/3/002.

[8]

M. Kaasalainen, Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction,, Inverse Problems and Imaging, 5 (2011), 37. doi: 10.3934/ipi.2011.5.37.

[9]

M. Kaasalainen and M. Viikinkoski, Shape reconstruction of irregular bodies with multiple complementary data sources,, Astron. Astrophys, 543 (2012). doi: 10.1051/0004-6361/201219267.

[10]

M. Kaasalainen and H. Nortunen, Compact YORP formulation and stability analysis,, Astron. Astrophys, 558 (2013). doi: 10.1051/0004-6361/201322221.

[11]

D. Nesvorný and D. Vokrouhlický, Analytic theory for the Yarkovsky-O'Keefe-Radzievski-Paddack effect on obliquity,, Astron. J., 136 (2008), 291. doi: 10.1088/0004-6256/136/1/291.

[12]

S. J. Ostro, R. S. Hudson, L. Benner and 4 colleagues, Asteroid Radar Astronomy,, in Asteroids III, (2002).

[13]

A. R. Thompson, J. M. Moran and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy,, Interferometry and Synthesis in Radio Astronomy, (2007). doi: 10.1002/9783527617845.

[1]

Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems & Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523

[2]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[3]

Xianmin Xu. Analysis for wetting on rough surfaces by a three-dimensional phase field model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2839-2850. doi: 10.3934/dcdsb.2016075

[4]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[5]

Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems & Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479

[6]

Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359

[7]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[8]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[9]

Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839

[10]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[11]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[12]

Lars Lamberg. Unique recovery of unknown projection orientations in three-dimensional tomography. Inverse Problems & Imaging, 2008, 2 (4) : 547-575. doi: 10.3934/ipi.2008.2.547

[13]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[14]

Hua Zhong, Xiao-Ping Wang, Shuyu Sun. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2905-2926. doi: 10.3934/dcdsb.2016079

[15]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[16]

Giuliano Lazzaroni, Mariapia Palombaro, Anja Schlömerkemper. Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 119-139. doi: 10.3934/dcdss.2017007

[17]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[18]

Igor Kukavica, Vlad C. Vicol. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 285-303. doi: 10.3934/dcds.2011.29.285

[19]

Hiroshi Matano, Yoichiro Mori. Global existence and uniqueness of a three-dimensional model of cellular electrophysiology. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1573-1636. doi: 10.3934/dcds.2011.29.1573

[20]

Xiangrong Li, Vittorio Cristini, Qing Nie, John S. Lowengrub. Nonlinear three-dimensional simulation of solid tumor growth. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 581-604. doi: 10.3934/dcdsb.2007.7.581

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]