Citation: |
[1] |
M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54 (2006), 4311-4322.doi: 10.1109/TSP.2006.881199. |
[2] |
W. Bajwa, J. Haupt, G. Raz, S. Wright and R. Nowak, Toeplitz-structured compressed sensing matrices, IEEE Workshop on Statistical Signal Processing (SSP), Madison, Wisconsin, August 2007, (2007), 294-298.doi: 10.1109/SSP.2007.4301266. |
[3] |
R. Baraniuk and P. Steeghs, Compressive radar imaging, IEEE Radar Conference, Waltham, Massachusetts, (2007), 128-133.doi: 10.1109/RADAR.2007.374203. |
[4] |
R. Bixby, Z. Gu and E. Rothberg, Gurobi optimization, http://www.gurobi.com, 2009-2011. |
[5] |
E. Candes, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate information, Communications on Pure and Applied Mathematics, 59 (2006), 1207-1223. |
[6] |
M. Combescure, Block-circulant matrices with circulant blocks, weil sums, and mutually unbiased bases. II. The prime power case, Journal of Mathematical Physics, 50 (2009), 1-12.doi: 10.1063/1.3078420. |
[7] |
D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.doi: 10.1109/TIT.2006.871582. |
[8] |
J. M. Duarte-Carvajalino and G. Sapiro, Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization, IEEE Transactions on Image Processing, 18 (2009), 1395-1408.doi: 10.1109/TIP.2009.2022459. |
[9] |
M. Elad, Optimized projections for compressed sensing, IEEE Transactions on Signal Processing, 55 (2007), 5695-5702.doi: 10.1109/TSP.2007.900760. |
[10] |
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image Processing, 15 (2006), 3736-3745.doi: 10.1109/TIP.2006.881969. |
[11] |
R. M. Gray, Toeplitz and circulant matrices: A review, Communications and Information Theory, 2 (2005), 155-239.doi: 10.1561/0100000006. |
[12] |
J. Haupt, W. U. Bajwa, G. Raz and R. D. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation, IEEE Transactions on Information Theory, 56 (2010), 5862-5875.doi: 10.1109/TIT.2010.2070191. |
[13] |
M. A. Herman and T. Strohmer, High-resolution radar via compressed sensing, IEEE transactions on signal processing, 57 (2009), 2275-2284.doi: 10.1109/TSP.2009.2014277. |
[14] |
D. Liang, G. Xu, H. Wang, K. F. King and L. Ying, Toeplitz random encoding MR imaging using compressed sensing, IEEE International Symposium on Biomedical Imaging: From Nano to Macro, (2009), 270-273. |
[15] |
S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, 41 (1993), 3397-3415.doi: 10.1109/78.258082. |
[16] |
R. Marcia, Z. Harmany and R. Willett, Compressive coded aperture imaging, in SPIE Electronic Imaging, 2009. |
[17] |
R. Marcia and R. Willett, Compressive coded aperture superresolution image reconstruction, ICASSP, (2008), 833-836.doi: 10.1109/ICASSP.2008.4517739. |
[18] |
D. Martin, C. Fowlkes, D. Tal and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, ICCV, 2 (2001), 416-423.doi: 10.1109/ICCV.2001.937655. |
[19] |
J. Meng, Y. Li, N. Nguyen, W. Yin and Z. Han, High resolution OFDM channel estimation with low speed ADC using compressive sensing, IEEE ICC 2011 Signal Processing for Communications Symposium, (2011), 1-6.doi: 10.1109/icc.2011.5962563. |
[20] |
J. Meng, W. Yin, Y. Li, N. Nguyen and Z. Han, Compressive sensing based high resolution channel estimation for {OFDM} system, IEEE Journal of Selected Topics in Signal Processing, Special Issue on Robust Measures and Tests Using Sparse Data for Detection and Estimation, 6 (2012), 15-25.doi: 10.1109/JSTSP.2011.2169649. |
[21] |
J. F. Murray and K. Kreutz-Delgado, Sparse image coding using learned overcomplete dictionaries, in Proceedings of the 2004 14th IEEE Signal Processing Society Workshop, 2004, 579-588.doi: 10.1109/MLSP.2004.1423021. |
[22] |
B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381 (1996), 607-609.doi: 10.1038/381607a0. |
[23] |
H. Rauhut, J. Romberg and J. A. Tropp, Restricted isometries for partial random circulant matrices, Applied and Computational Harmonic Analysis, 32 (2012), 242-254.doi: 10.1016/j.acha.2011.05.001. |
[24] |
J. Romberg, Compressive sensing by random convolution, SIAM Journal on Imaging Sciences, 2 (2009), 1098-1128.doi: 10.1137/08072975X. |
[25] |
A. C. Sauve, A. O. Hero III, W. L. Rogers, S. J. Wilderman and N. H. Clinthorne, 3D image reconstruction for a compton spect camera model, IEEE Transactions on Nuclear Science, 46 (1999), 2075-2084.doi: 10.1109/23.819285. |
[26] |
J. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Transactions on Information Theory, 50 (2006), 2231-2242.doi: 10.1109/TIT.2004.834793. |
[27] |
J. Tropp, M. Wakin, M. Duarte, D. Baron and R. Baraniuk, Random filters for compressive sampling and reconstruction, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 3, Toulouse, France, 2006, 872-875.doi: 10.1109/ICASSP.2006.1660793. |
[28] |
E. Van den Berg and M. P. Friedlander, SPGL1: A MATLAB solver for large-scale sparse reconstruction, 2007. Available from: http://www.cs.ubc.ca/labs/scl/index.php/main/spgl1. |
[29] |
R. M. Willett, R. F. Marcia and J. M. Nichols, Compressed sensing for practical optical imaging systems: A tutorial, Optical Engineering, 50 (2011), 1-13. |
[30] |
S. Wright, R. Nowak and M. Figueiredo, Sparse reconstruction by separable approximation, IEEE Transactions on Signal Processing, 57 (2009), 2479-2493.doi: 10.1109/TSP.2009.2016892. |
[31] |
J. Yang and Y. Zhang, Alternating direction algorithms for $l_1 $-problems in compressive sensing, SIAM Journal on Scientific Computing, 33 (2011), 250-278.doi: 10.1137/090777761. |
[32] |
W. Yin, Analysis and generalizations of the linearized Bregman method, SIAM Journal on Imaging Sciences, 3 (2010), 856-877.doi: 10.1137/090760350. |
[33] |
W. Yin, S. P. Morgan, J. Yang and Y. Zhang, Practical compressive sensing with Toeplitz and circulant matrices, in Proceedings of Visual Communications and Image Processing (VCIP), 2010. |
[34] |
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing, SIAM Journal on Imaging Sciences, 1 (2008), 143-168.doi: 10.1137/070703983. |
[35] |
W. Yin, Gurobi mex: A matlab interface for gurobi, 2009-2011. Available from: http://www.convexoptimization.com/wikimization/index.php/gurobi_mex. |