November  2014, 8(4): 939-957. doi: 10.3934/ipi.2014.8.939

Stability of the Calderón problem in admissible geometries

1. 

Instituto de Ciencias Matemáticas - CSIC, Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain

2. 

Department of Mathematics and Statistics, University of Helsinki and University of Jyväskylä, P.O. Box 35 FI-40014 Jyväskylä

Received  May 2014 Revised  September 2014 Published  November 2014

In this paper we prove log log type stability estimates for inverse boundary value problems on admissible Riemannian manifolds of dimension $n \geq 3$. The stability estimates correspond to the uniqueness results in [13]. These inverse problems arise naturally when studying the anisotropic Calderón problem.
Citation: Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.  doi: 10.1080/00036818808839730.  Google Scholar

[2]

G. Alessandrini, Open issues of stability for the inverse conductivity problem,, J. Inv. Ill-Posed Probl., 15 (2007), 451.  doi: 10.1515/jiip.2007.025.  Google Scholar

[3]

G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem,, Adv. Appl. Math., 35 (2005), 207.  doi: 10.1016/j.aam.2004.12.002.  Google Scholar

[4]

K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane,, Comm. PDE, 30 (2005), 207.  doi: 10.1081/PDE-200044485.  Google Scholar

[5]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane,, Ann. of Math., 163 (2006), 265.  doi: 10.4007/annals.2006.163.265.  Google Scholar

[6]

A. P. Calderón, On an Inverse Boundary Value Problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980).   Google Scholar

[7]

P. Caro, On an inverse problem in electromagnetism with local data: Stability and uniqueness,, Inverse Probl. Imaging, 5 (2011), 297.  doi: 10.3934/ipi.2011.5.297.  Google Scholar

[8]

P. Caro, A. García and J. M. Reyes, Stability of the Calderón problem for less regular conductivities,, J. Differential Equations, 254 (2013), 469.  doi: 10.1016/j.jde.2012.08.018.  Google Scholar

[9]

P. Caro, D. Dos Santos Ferreira and A. Ruiz, Stability estimates for the Radon transform with restricted data and applications,, Adv. Math., 267 (2014), 523.  doi: 10.1016/j.aim.2014.08.009.  Google Scholar

[10]

P. Caro, D. Dos Santos Ferreira and A. Ruiz, Stability estimates for the Calderón problem with partial data,, preprint, (2014).   Google Scholar

[11]

A. Clop, D. Faraco and A. Ruiz, Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities,, Inverse Probl. Imaging, 4 (2010), 49.  doi: 10.3934/ipi.2010.4.49.  Google Scholar

[12]

N.S. Dairbekov, G.P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field,, Adv. Math., 216 (2007), 535.  doi: 10.1016/j.aim.2007.05.014.  Google Scholar

[13]

D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems,, Invent. Math., 178 (2009), 119.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[14]

D. Dos Santos Ferreira, C. E. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries,, Comm. PDE, 38 (2013), 50.  doi: 10.1080/03605302.2012.736911.  Google Scholar

[15]

D. Dos Santos Ferreira, Y. Kurylev, M. Lassas and M. Salo, The Calderón problem in transversally anisotropic geometries,, J. Eur. Math. Soc, ().   Google Scholar

[16]

B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights,, J. Geom. Anal., 18 (2008), 89.  doi: 10.1007/s12220-007-9007-6.  Google Scholar

[17]

B. Haberman and D. Tataru, Uniqueness in Calderon's problem with Lipschitz conductivities,, Duke Math. J., 162 (2013), 497.  doi: 10.1215/00127094-2019591.  Google Scholar

[18]

H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data,, Inverse Problems, 22 (2006), 1787.  doi: 10.1088/0266-5611/22/5/015.  Google Scholar

[19]

H. Heck and J.-N. Wang, Optimal stability estimate of the inverse boundary value problem by partial measurements,, preprint, (2007).   Google Scholar

[20]

H. Kang and K. Yun, Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator,, SIAM J. Math. Anal., 34 (2003), 719.  doi: 10.1137/S0036141001395042.  Google Scholar

[21]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations,, Duke Math. J., 157 (2011), 369.  doi: 10.1215/00127094-1272903.  Google Scholar

[22]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math., 165 (2007), 567.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[23]

K. Knudsen, M. Lassas, J. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem,, Inverse Problems and Imaging, 3 (2009), 599.  doi: 10.3934/ipi.2009.3.599.  Google Scholar

[24]

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements,, Commun. Pure Appl. Math., 42 (1989), 1097.  doi: 10.1002/cpa.3160420804.  Google Scholar

[25]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[26]

A. Nachman, Reconstructions from boundary measurements,, Ann. Math., 128 (1988), 531.  doi: 10.2307/1971435.  Google Scholar

[27]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar

[28]

M. Salo, The Calderón problem on Riemannian manifolds,, Chapter in Inverse Problems and Applications: Inside Out II (ed. G. Uhlmann), (2013), 167.   Google Scholar

[29]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161.   Google Scholar

[30]

V. A. Sharafutdinov, Ray transform on Riemannian manifolds. Eight lectures on integral geometry,, , ().   Google Scholar

[31]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity,, Duke Math. J., 123 (2004), 445.  doi: 10.1215/S0012-7094-04-12332-2.  Google Scholar

[32]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[33]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

[34]

S. Vessella, A continuous dependence result in the analytic continuation problem,, Forum Math., 11 (1999), 695.  doi: 10.1515/form.1999.020.  Google Scholar

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.  doi: 10.1080/00036818808839730.  Google Scholar

[2]

G. Alessandrini, Open issues of stability for the inverse conductivity problem,, J. Inv. Ill-Posed Probl., 15 (2007), 451.  doi: 10.1515/jiip.2007.025.  Google Scholar

[3]

G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem,, Adv. Appl. Math., 35 (2005), 207.  doi: 10.1016/j.aam.2004.12.002.  Google Scholar

[4]

K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane,, Comm. PDE, 30 (2005), 207.  doi: 10.1081/PDE-200044485.  Google Scholar

[5]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane,, Ann. of Math., 163 (2006), 265.  doi: 10.4007/annals.2006.163.265.  Google Scholar

[6]

A. P. Calderón, On an Inverse Boundary Value Problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980).   Google Scholar

[7]

P. Caro, On an inverse problem in electromagnetism with local data: Stability and uniqueness,, Inverse Probl. Imaging, 5 (2011), 297.  doi: 10.3934/ipi.2011.5.297.  Google Scholar

[8]

P. Caro, A. García and J. M. Reyes, Stability of the Calderón problem for less regular conductivities,, J. Differential Equations, 254 (2013), 469.  doi: 10.1016/j.jde.2012.08.018.  Google Scholar

[9]

P. Caro, D. Dos Santos Ferreira and A. Ruiz, Stability estimates for the Radon transform with restricted data and applications,, Adv. Math., 267 (2014), 523.  doi: 10.1016/j.aim.2014.08.009.  Google Scholar

[10]

P. Caro, D. Dos Santos Ferreira and A. Ruiz, Stability estimates for the Calderón problem with partial data,, preprint, (2014).   Google Scholar

[11]

A. Clop, D. Faraco and A. Ruiz, Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities,, Inverse Probl. Imaging, 4 (2010), 49.  doi: 10.3934/ipi.2010.4.49.  Google Scholar

[12]

N.S. Dairbekov, G.P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field,, Adv. Math., 216 (2007), 535.  doi: 10.1016/j.aim.2007.05.014.  Google Scholar

[13]

D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems,, Invent. Math., 178 (2009), 119.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[14]

D. Dos Santos Ferreira, C. E. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries,, Comm. PDE, 38 (2013), 50.  doi: 10.1080/03605302.2012.736911.  Google Scholar

[15]

D. Dos Santos Ferreira, Y. Kurylev, M. Lassas and M. Salo, The Calderón problem in transversally anisotropic geometries,, J. Eur. Math. Soc, ().   Google Scholar

[16]

B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights,, J. Geom. Anal., 18 (2008), 89.  doi: 10.1007/s12220-007-9007-6.  Google Scholar

[17]

B. Haberman and D. Tataru, Uniqueness in Calderon's problem with Lipschitz conductivities,, Duke Math. J., 162 (2013), 497.  doi: 10.1215/00127094-2019591.  Google Scholar

[18]

H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data,, Inverse Problems, 22 (2006), 1787.  doi: 10.1088/0266-5611/22/5/015.  Google Scholar

[19]

H. Heck and J.-N. Wang, Optimal stability estimate of the inverse boundary value problem by partial measurements,, preprint, (2007).   Google Scholar

[20]

H. Kang and K. Yun, Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator,, SIAM J. Math. Anal., 34 (2003), 719.  doi: 10.1137/S0036141001395042.  Google Scholar

[21]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations,, Duke Math. J., 157 (2011), 369.  doi: 10.1215/00127094-1272903.  Google Scholar

[22]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math., 165 (2007), 567.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[23]

K. Knudsen, M. Lassas, J. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem,, Inverse Problems and Imaging, 3 (2009), 599.  doi: 10.3934/ipi.2009.3.599.  Google Scholar

[24]

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements,, Commun. Pure Appl. Math., 42 (1989), 1097.  doi: 10.1002/cpa.3160420804.  Google Scholar

[25]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[26]

A. Nachman, Reconstructions from boundary measurements,, Ann. Math., 128 (1988), 531.  doi: 10.2307/1971435.  Google Scholar

[27]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar

[28]

M. Salo, The Calderón problem on Riemannian manifolds,, Chapter in Inverse Problems and Applications: Inside Out II (ed. G. Uhlmann), (2013), 167.   Google Scholar

[29]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161.   Google Scholar

[30]

V. A. Sharafutdinov, Ray transform on Riemannian manifolds. Eight lectures on integral geometry,, , ().   Google Scholar

[31]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity,, Duke Math. J., 123 (2004), 445.  doi: 10.1215/S0012-7094-04-12332-2.  Google Scholar

[32]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[33]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

[34]

S. Vessella, A continuous dependence result in the analytic continuation problem,, Forum Math., 11 (1999), 695.  doi: 10.1515/form.1999.020.  Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[7]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[8]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[9]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[10]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[13]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[14]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[15]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[16]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]