Citation: |
[1] |
M. S. C. Almeida and L. B. Almeida, Blind and semi-blind deblurring of natural images, IEEE Trans. Image Process., 19 (2010), 36-52.doi: 10.1109/TIP.2009.2031231. |
[2] |
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer, New York, 2002. |
[3] |
J. Bardsley, S. Jefferies, J. Nagy and R. Plemmons, A computational method for the restoration of images with an unknown, spatially-varying blur, Opt. Express, 14 (2006), 1767-1782.doi: 10.1364/OE.14.001767. |
[4] |
M. Burger and O. Scherzer, Regularization methods for blind deconvolution and blind source separation problems, Math. Control Signals Systems, 14 (2001), 358-383.doi: 10.1007/s498-001-8041-y. |
[5] |
J.-F. Cai, H. Ji, C. Liu and Z. Shen, Blind motion deblurring using multiple images, J. Comput. Phys., 228 (2009), 5057-5071.doi: 10.1016/j.jcp.2009.04.022. |
[6] |
P. Campisi and K. Egiazarian, eds., Blind image deconvolution: Theory and applications, CRC press, Boca Raton, FL, 2007.doi: 10.1201/9781420007299. |
[7] |
A. S. Carasso, Direct blind deconvolution, SIAM J. Appl. Math., 61 (2001), 1980-2007.doi: 10.1137/S0036139999362592. |
[8] |
_________, The APEX method in image sharpening and the use of low exponent Lévy stable laws, SIAM J. Appl. Math., 63 (2002), 593-618.doi: 10.1137/S0036139901389318. |
[9] |
_________, APEX blind deconvolution of color Hubble space telescope imagery and other astronomical data, Optical Engineering, 45 (2006), 107004. |
[10] |
_________, False characteristic functions and other pathologies in variational blind deconvolution: A method of recovery, SIAM J. Appl. Math., 70 (2009), 1097-1119.doi: 10.1137/080737769. |
[11] |
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120-145.doi: 10.1007/s10851-010-0251-1. |
[12] |
T. F. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM, Philadelphia, 2005.doi: 10.1137/1.9780898717877. |
[13] |
T. F. Chan and C.-K. Wong, Total variation blind deconvolution, IEEE Trans. Image Process., 7 (1998), 370-375.doi: 10.1109/83.661187. |
[14] |
R. Chartrand and W. Yin, Iteratively reweighted algorithms for compressive sensing, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, 3869-3872. |
[15] |
S. Cho, Y. Matsushita and S. Lee, Removing non-uniform motion blur from images, in IEEE 11th International Conference on Computer Vision, 2007, 1-8.doi: 10.1109/ICCV.2007.4408904. |
[16] |
J. C. De los Reyes and C.-B. Schönlieb, Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization, Inverse Problems and Imaging, 7 (2013), 1183-1214.doi: 10.3934/ipi.2013.7.1183. |
[17] |
A. L. Dontchev and R. T. Rockafellar, Robinson's implicit function theorem and its extensions, Math. Program., Ser. B, 117 (2009), 129-147.doi: 10.1007/s10107-007-0161-1. |
[18] |
D. A. Fish, A. M. Brinicombe and E. R. Pike, Blind deconvolution by means of the Richardson-Lucy algorithm, J. Opt. Soc. Am. A, 12 (1995), 58-65.doi: 10.1364/JOSAA.12.000058. |
[19] |
R. Fletcher, S. Leyffer, D. Ralph and S. Scholtes, Local convergence of SQP methods for mathematical programs with equilibrium constraints, SIAM J. Optim., 17 (2006), 259-286.doi: 10.1137/S1052623402407382. |
[20] |
R. W. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), 315-339.doi: 10.1007/BF01385726. |
[21] |
M. Fukushima, Z.-Q. Luo and J.-S. Pang, A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints, Comput. Optim. Appl., 10 (1998), 5-34.doi: 10.1023/A:1018359900133. |
[22] |
E. M. Gafni and D. P. Bertsekas, Convergence of a Gradient Projection Method, Laboratory for Information and Decision Systems Report LIDS-P-1201, Massachusetts Institute of Technology, 1982. |
[23] |
L. He, A. Marquina and S. J. Osher, Blind deconvolution using TV regularization and Bregman iteration, International Journal of Imaging Systems and Technology, 15 (2005), 74-83.doi: 10.1002/ima.20040. |
[24] |
M. Hintermüller and I. Kopacka, Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm, SIAM J. Optim., 20 (2009), 868-902.doi: 10.1137/080720681. |
[25] |
M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem, SIAM J. Appl. Math., 64 (2004), 1311-1333.doi: 10.1137/S0036139903422784. |
[26] |
M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006), 1-23.doi: 10.1137/040613263. |
[27] |
M. Hintermüller and T. Surowiec, A bundle-free implicit programming approach for a class of MPECs in function space, preprint, 2014. |
[28] |
M. Hintermüller and T. Wu, Nonconvex $TV^q$-models in image restoration: Analysis and a trust-region regularization-based superlinearly convergent solver, SIAM J. Imaging Sci., 6 (2013), 1385-1415.doi: 10.1137/110854746. |
[29] |
_________, A superlinearly convergent $R$-regularized Newton scheme for variational models with concave sparsity-promoting priors, Comput. Optim. Appl., 57 (2014), 1-25.doi: 10.1007/s10589-013-9583-2. |
[30] |
K. Ito and K. Kunisch, An active set strategy based on the augmented Lagrangian formulation for image restoration, Mathematical Modelling and Numerical Analysis, 33 (1999), 1-21.doi: 10.1051/m2an:1999102. |
[31] |
L. Justen, Blind Deconvolution: Theory, Regularization and Applications, Ph.D. thesis, University of Bremen, 2006. |
[32] |
L. Justen and R. Ramlau, A non-iterative regularization approach to blind deconvolution, Inverse Problems, 22 (2006), 771-800.doi: 10.1088/0266-5611/22/3/003. |
[33] |
D. Kundur and D. Hatzinakos, Blind image deconvolution, IEEE Signal Process. Mag., 13 (1996), 43-64.doi: 10.1109/79.489268. |
[34] |
________, Blind image deconvolution revisited, IEEE Signal Process. Mag., 13 (1996), 61-63. |
[35] |
K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models, SIAM J. Imaging Sci., 6 (2013), 938-983.doi: 10.1137/120882706. |
[36] |
A. Levin, Blind motion deblurring using image statistics, Advances in Neural Information Processing Systems, 19 (2006), 841-848. |
[37] |
A. B. Levy, Solution sensitivity from general principles, SIAM J. Control Optim., 40 (2001), 1-38.doi: 10.1137/S036301299935211X. |
[38] |
Z.-Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, 1996.doi: 10.1017/CBO9780511983658. |
[39] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications, Springer, 2006. |
[40] |
J. Nocedal and S. Wright, Numerical optimization, 2nd ed., Springer, New York, 2006. |
[41] |
J. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.doi: 10.1007/978-1-4757-2825-5. |
[42] |
J. V. Outrata, A generalized mathematical program with equilibrium constraints, SIAM J. Control Optim., 38 (2000), 1623-1638.doi: 10.1137/S0363012999352911. |
[43] |
S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), 43-62.doi: 10.1287/moor.5.1.43. |
[44] |
________, Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity, Math. Programming Stud., 30 (1987), 45-66. |
[45] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, New York, 1998.doi: 10.1007/978-3-642-02431-3. |
[46] |
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F. |
[47] |
H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity, Math. Oper. Res., 25 (2000), 1-22.doi: 10.1287/moor.25.1.1.15213. |
[48] |
S. Scholtes, Convergence properties of a regularization scheme for mathematical programs with complementarity constraints, SIAM J. Optim., 11 (2001), 918-936.doi: 10.1137/S1052623499361233. |
[49] |
Q. Shan, J. Jia and A. Agarwala, High-quality motion deblurring from a single image, ACM T. Graphic, 27 (2008), p73.doi: 10.1145/1399504.1360672. |
[50] |
A. Shapiro, Sensitivity analysis of parameterized variational inequalities, Math. Oper. Res., 30 (2005), 109-126.doi: 10.1287/moor.1040.0115. |
[51] |
J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints, J. Math. Anal. Appl., 307 (2005), 350-369.doi: 10.1016/j.jmaa.2004.10.032. |
[52] |
J. J. Ye, D. L. Zhu and Q. J. Zhu, Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM J. Optim., 7 (1997), 481-507.doi: 10.1137/S1052623493257344. |
[53] |
Y.-L. You and M. Kaveh, A regularization approach to joint blur identification and image restoration, IEEE Trans. Image Process., 5 (1996), 416-428. |