February  2015, 9(1): 163-188. doi: 10.3934/ipi.2015.9.163

Overlapping domain decomposition methods for linear inverse problems

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

3. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Received  October 2013 Revised  May 2014 Published  January 2015

We shall derive and propose several efficient overlapping domain decomposition methods for solving some typical linear inverse problems, including the identification of the flux, the source strength and the initial temperature in second order elliptic and parabolic systems. The methods are iterative, and computationally very efficient: only local forward and adjoint problems need to be solved in each subdomain, and the local minimizations have explicit solutions. Numerical experiments are provided to demonstrate the robustness and efficiency of the methods: the algorithms converge globally, even with rather poor initial guesses; and their convergences do not deteriorate or deteriorate only slightly when the meshes are refined.
Citation: Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163
References:
[1]

R. C. Aster, B. Borchers and C. H. Thurber, Parameter Estimation and Inverse Problems,, Elsevier Academic Press, (2005).   Google Scholar

[2]

H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems,, Birkhauser, (1989).   Google Scholar

[3]

X. Cai, S. Liu and J. Zou, Parallel overlapping domain decomposition methods for coupled inverse elliptic problems,, Comm. Appl. Math. Comput. Sci., 4 (2009), 1.  doi: 10.2140/camcos.2009.4.1.  Google Scholar

[4]

T. Chan and T. Mathew, Domain decomposition algorithms,, Acta Numerica, (1994), 61.   Google Scholar

[5]

T. Chan and X. Tai, Identification of discontinuous coefficients from elliptic problems using total variation regularization,, SIAM J. Sci. Comput., 25 (2003), 881.  doi: 10.1137/S1064827599326020.  Google Scholar

[6]

H. Chang and D. Yang, A Schwarz domain decomposition method with gradient projection for optimal control governed by elliptic partial differential equations,, J. Comput. Appl. Math., 235 (2011), 5078.  doi: 10.1016/j.cam.2011.04.037.  Google Scholar

[7]

I. Daubechies, M. Defrise and C. Demol, An iterative thresholding algorithm for linear inverse problems,, Comm. Pure Appl. Math., 57 (2004), 1413.  doi: 10.1002/cpa.20042.  Google Scholar

[8]

H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Kluwer Academic Publishers, (2000).   Google Scholar

[9]

M. Heinkenschloss and M. Herty, A spatial domain decomposition method for parabolic optimal control problems,, J. Comput. Appl. Math., 201 (2007), 88.  doi: 10.1016/j.cam.2006.02.002.  Google Scholar

[10]

M. Heinkenschloss and H. Nguyen, Neumann-Neumann domain decomposition preconditioners for linear-quadratic elliptic optimal control problems,, SIAM Journal on Scientific Computing, 28 (2006), 1001.  doi: 10.1137/040612774.  Google Scholar

[11]

K. Ito and J. Zou, Identification of some source densities of the distribution type,, J. Comput. Appl. Math., 132 (2001), 295.  doi: 10.1016/S0377-0427(00)00332-0.  Google Scholar

[12]

J. Li and J. Zou, A multilevel model correction method for parameter identification,, Inverse Problems, 23 (2007), 1759.  doi: 10.1088/0266-5611/23/5/001.  Google Scholar

[13]

X. Tai, J. Froyen, M. Espedal and T. Chan, Overlapping domain decomposition and multigrid methods for inverse problems,, Contemporary Mathematics, 218 (1998), 523.   Google Scholar

[14]

A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory,, Springer-Verlag, (2004).   Google Scholar

[15]

L. Wang and J. Zou, Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems,, Disc. Cont. Dynam. Sys., 14 (2010), 1641.  doi: 10.3934/dcdsb.2010.14.1641.  Google Scholar

[16]

J. Xie and J. Zou, Numerical reconstruction of heat fluxes,, SIAM J. Numer. Anal., 43 (2005), 1504.  doi: 10.1137/030602551.  Google Scholar

[17]

J. Xu, Iterative methods by space decomposition and subspace correction,, SIAM Review, 34 (1992), 581.  doi: 10.1137/1034116.  Google Scholar

[18]

J. Xu and J. Zou, Some nonoverlapping domain decomposition methods,, SIAM Review, 40 (1998), 857.  doi: 10.1137/S0036144596306800.  Google Scholar

show all references

References:
[1]

R. C. Aster, B. Borchers and C. H. Thurber, Parameter Estimation and Inverse Problems,, Elsevier Academic Press, (2005).   Google Scholar

[2]

H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems,, Birkhauser, (1989).   Google Scholar

[3]

X. Cai, S. Liu and J. Zou, Parallel overlapping domain decomposition methods for coupled inverse elliptic problems,, Comm. Appl. Math. Comput. Sci., 4 (2009), 1.  doi: 10.2140/camcos.2009.4.1.  Google Scholar

[4]

T. Chan and T. Mathew, Domain decomposition algorithms,, Acta Numerica, (1994), 61.   Google Scholar

[5]

T. Chan and X. Tai, Identification of discontinuous coefficients from elliptic problems using total variation regularization,, SIAM J. Sci. Comput., 25 (2003), 881.  doi: 10.1137/S1064827599326020.  Google Scholar

[6]

H. Chang and D. Yang, A Schwarz domain decomposition method with gradient projection for optimal control governed by elliptic partial differential equations,, J. Comput. Appl. Math., 235 (2011), 5078.  doi: 10.1016/j.cam.2011.04.037.  Google Scholar

[7]

I. Daubechies, M. Defrise and C. Demol, An iterative thresholding algorithm for linear inverse problems,, Comm. Pure Appl. Math., 57 (2004), 1413.  doi: 10.1002/cpa.20042.  Google Scholar

[8]

H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Kluwer Academic Publishers, (2000).   Google Scholar

[9]

M. Heinkenschloss and M. Herty, A spatial domain decomposition method for parabolic optimal control problems,, J. Comput. Appl. Math., 201 (2007), 88.  doi: 10.1016/j.cam.2006.02.002.  Google Scholar

[10]

M. Heinkenschloss and H. Nguyen, Neumann-Neumann domain decomposition preconditioners for linear-quadratic elliptic optimal control problems,, SIAM Journal on Scientific Computing, 28 (2006), 1001.  doi: 10.1137/040612774.  Google Scholar

[11]

K. Ito and J. Zou, Identification of some source densities of the distribution type,, J. Comput. Appl. Math., 132 (2001), 295.  doi: 10.1016/S0377-0427(00)00332-0.  Google Scholar

[12]

J. Li and J. Zou, A multilevel model correction method for parameter identification,, Inverse Problems, 23 (2007), 1759.  doi: 10.1088/0266-5611/23/5/001.  Google Scholar

[13]

X. Tai, J. Froyen, M. Espedal and T. Chan, Overlapping domain decomposition and multigrid methods for inverse problems,, Contemporary Mathematics, 218 (1998), 523.   Google Scholar

[14]

A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory,, Springer-Verlag, (2004).   Google Scholar

[15]

L. Wang and J. Zou, Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems,, Disc. Cont. Dynam. Sys., 14 (2010), 1641.  doi: 10.3934/dcdsb.2010.14.1641.  Google Scholar

[16]

J. Xie and J. Zou, Numerical reconstruction of heat fluxes,, SIAM J. Numer. Anal., 43 (2005), 1504.  doi: 10.1137/030602551.  Google Scholar

[17]

J. Xu, Iterative methods by space decomposition and subspace correction,, SIAM Review, 34 (1992), 581.  doi: 10.1137/1034116.  Google Scholar

[18]

J. Xu and J. Zou, Some nonoverlapping domain decomposition methods,, SIAM Review, 40 (1998), 857.  doi: 10.1137/S0036144596306800.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[3]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[4]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[5]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[6]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[10]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[13]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[14]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[17]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[18]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[19]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[20]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]