Citation: |
[1] |
M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica, 14 (2005), 1-137.doi: 10.1017/S0962492904000212. |
[2] |
L. Bergamaschi, J. Gondzio and G. Zilli, Preconditioning indefinite systems in interior point methods for optimization, Computational Optimization and Applications, 28 (2004), 149-171.doi: 10.1023/B:COAP.0000026882.34332.1b. |
[3] |
M. A. Branch, T. F. Coleman and Y. Li, A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems, SIAM Journal on Scientific Computing, 21 (1999), 1-23 (electronic).doi: 10.1137/S1064827595289108. |
[4] |
T. Bui-Thanh, Model-Constrained Optimization Methods for Reduction of Parameterized Large-Scale Systems, PhD thesis, Department of Aeronautics and Astronautics, MIT, 2007. |
[5] |
T. Bui-Thanh and O. Ghattas, Analysis of the Hessian for inverse scattering problems. Part I: Inverse shape scattering of acoustic waves, Inverse Problems, 28 (2012), 055001, 32pp.doi: 10.1088/0266-5611/28/5/055001. |
[6] |
________, Analysis of the Hessian for inverse scattering problems. Part II: Inverse medium scattering of acoustic waves, Inverse Problems, 28 (2012), p. 055002. |
[7] |
________, Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves. Submitted to Inverse Problems, 2012. |
[8] |
________, A scaled stochastic Newton algorithm for Markov chain Monte Carlo simulations, Submitted to SIAM Journal of Uncertainty Quantification, 2012. |
[9] |
T. Bui-Thanh, K. Willcox and O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space, SIAM Journal on Scientific Computing, 30 (2008), 3270-3288.doi: 10.1137/070694855. |
[10] |
T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM Journal on Optimization, 6 (1996), 418-445.doi: 10.1137/0806023. |
[11] |
S. Comelli, A Novel Class of Priors for Edge-Preserving Methods in Bayesian Inversion, master's thesis, Universita Degli Studi Di Milano, 2011. |
[12] |
M. Dashti, S. Harris and A. Stuart, Besov priors for Bayesian inverse problems, Inverse Problems and Imaging, 6 (2012), 183-200.doi: 10.3934/ipi.2012.6.183. |
[13] |
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.doi: 10.1137/1.9781611970104. |
[14] |
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, 57 (2004), 1413-1457.doi: 10.1002/cpa.20042. |
[15] |
J. E. Dennis and L. N. Vicente, Trust-region interior-point algorithms for minimization methods with simple bounds, in Applied Mathematics and Parallel Computing, Festschrift for Klaus Ritter, H. Fischer, B. Riedmüller, and S. Schäffler, eds., Heidelberg, (1996), Physica-Verlag, pp. 97-107. |
[16] |
M. A. T. Figueiredo, R. D. Nowak and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 586-597.doi: 10.1109/JSTSP.2007.910281. |
[17] |
J. N. Franklin, Well-posed stochastic extensions of ill-posed linear problems, Journal of Mathematical Analysis and Applications, 31 (1970), 682-716.doi: 10.1016/0022-247X(70)90017-X. |
[18] |
T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.doi: 10.1137/080725891. |
[19] |
A. Grasmair, M. Haltmeier and O. Scherzer, Sparse regularization with $l^q$ penalty term, Inverse Problems, 24 (2008), 055020, 13pp.doi: 10.1088/0266-5611/24/5/055020. |
[20] |
K. Hamalainen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimaki and S. Siltanen, Sparse tomography, SIAM J. Sci. Comput., 35 (2013), B644-B665.doi: 10.1137/120876277. |
[21] |
M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption, Mathematical Programming, 86 (1999), 615-635.doi: 10.1007/s101070050107. |
[22] |
C. Kanzow and A. Klug, On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints, Computational Optimization and Applications, 35 (2006), 177-197.doi: 10.1007/s10589-006-6514-5. |
[23] |
C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, 1999.doi: 10.1137/1.9781611970920. |
[24] |
S.-J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, An interior-point method for large-scale $l_1$-regularized least squares, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 606-617. |
[25] |
V. Kolehmainen, M. Lassas, K. Niinimaki and S. Siltanen, Sparsity-promoting Bayesian inversion, Inverse Problems, 28 (2012), 025005, 28pp.doi: 10.1088/0266-5611/28/2/025005. |
[26] |
S. Lasanen, Discretizations of generalized random variables with applications to inverse problems, Ann. Acad. Sci. Fenn. Math. Diss., 2002 (2002), 64 pp. |
[27] |
M. Lassas, E. Saksman and S. Siltanen, Discretization invariant Bayesian inversion and Besov space priors, Inverse Problems and Imaging, 3 (2009), 87-122.doi: 10.3934/ipi.2009.3.87. |
[28] |
M. S. Lehtinen, L. Päivärinta and E. Somersalo, Linear inverse problems for generalized random variables, Inverse Problems, 5 (1989), 599-612.doi: 10.1088/0266-5611/5/4/011. |
[29] |
C.-J. Lin and J. J. Moré, Newton's method for large bound-constrained optimization problems, SIAM Journal on Optimization, 9 (1999), 1100-1127.doi: 10.1137/S1052623498345075. |
[30] |
D. A. Lorenz and D. Trede, Optimal convergence rates for Tikhonov regularization in Besov scales, Inverse Problems, 24 (2008), 055010, 14pp.doi: 10.1088/0266-5611/24/5/055010. |
[31] |
M. Lustig, D. Donoho and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Journal of Magnetic Resonance Imaging, 58 (2007), 1182-1195.doi: 10.1002/mrm.21391. |
[32] |
S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal on Optimization, 2 (1992), 575-601.doi: 10.1137/0802028. |
[33] |
P. Piiroinen, Statistical Measurements, Experiments, and Applications, PhD thesis, Department of Mathematics and Statistics, University of Helsinki, 2005. |
[34] |
D. F. Shanno and R. J. Vanderbei, An interior-point method for nonconvex nonlinear programming, Computational Optimization and Applications, 13 (1999), 231-252.doi: 10.1023/A:1008677427361. |
[35] |
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numerica, 19 (2010), 451-559.doi: 10.1017/S0962492910000061. |
[36] |
H. Triebel, Theory of Function Spaces III, vol. 100, Birhäuser Verlag, 2006. |
[37] |
J. Trzasko, A. Manduca and E. Borisch, Sparse MRI reconstruction via multiscale L0-continuation, in Proceedings of the 14th IEEE/SP Workshop o Satistical Signal Processing, (2007), 176-180.doi: 10.1109/SSP.2007.4301242. |
[38] |
B. Vexler, Adaptive finite element methods for parameter identification problems, Contributions in Mathematical and Computational Sciences, 4 (2013), 31-54.doi: 10.1007/978-3-642-30367-8_2. |
[39] |
S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1997.doi: 10.1137/1.9781611971453. |
[40] |
C. Zhu, R. H. Byrd, P. Lu and J. Nocedal, L-bfgs-b - fortran subroutines for large-scale bound constrained optimization, ACM Transactions on Mathematical Software, 23 (1997), 550-560.doi: 10.1145/279232.279236. |