May  2015, 9(2): 395-413. doi: 10.3934/ipi.2015.9.395

Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization

1. 

Tufts University, Department of Mathematics, Medford, MA 02155, United States

Received  April 2014 Revised  October 2014 Published  March 2015

One challenge for modern imaging methods is the investigation of objects which change during the data acquisition. This occurs in non-destructive testing as well as in medical applications, e.g. on account of patient or organ movements. Due to the object's deformations, the respective imaging modality is described by a dynamic inverse problem. In this paper, a classification scheme for linear dynamic problems depending on the object's motion is provided. Based on this scheme, we study the class in detail where the dynamic problem is still related to the operator in the static case, and where we call the deformations moderate. We proof important properties of the dynamic operator, derive a singular value decomposition and develop suitable regularization methods. The application of these methods to specific problems is illustrated at two examples including dynamic computerized tomography.
Citation: Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems and Imaging, 2015, 9 (2) : 395-413. doi: 10.3934/ipi.2015.9.395
References:
[1]

D. Atkinson, D. L. Hill, P. N. Stoyle, P. E. Summers, S. Clare, R. Bowtell and S. F. Keevil, Automatic compensation of motion artefacts in MRI, Magn. Reson. Med., 41 (1999), 163-170. doi: 10.1002/(SICI)1522-2594(199901)41:1<163::AID-MRM23>3.3.CO;2-0.

[2]

L. Desbat, S. Roux and P. Grangeat, Compensation of some time dependent deformations in tomography, IEEE Trans. Med. Imag., 26 (2007), 261-269. doi: 10.1109/TMI.2006.889743.

[3]

H. W. Engl and C. W. Groetsch, Inverse and Ill-Posed Problems, Academic Press, New York, 1986.

[4]

J. Fitzgerald and P.G. Danias, Effect of motion on cardiac SPECT imaging: Recognition and motion correction, J. Nucl. Cardiol., 8 (2001), 701-706. doi: 10.1067/mnc.2001.118694.

[5]

F. Gigengack, L. Ruthotto, M. Burger, C. H. Wolters, X. Jiang and K. P. Schäfers, Motion correction in dual gated cardiac PET using mass-preserving image registration, IEEE Trans. Med. Imag., 31 (2012), 698-712. doi: 10.1109/TMI.2011.2175402.

[6]

G. H. Glover and J. M. Pauly, Projection Reconstruction Techniques for reduction of motion effects in MRI, Mag. Reson. Med., 28 (1992), 275-289. doi: 10.1002/mrm.1910280209.

[7]

B. Hahn, Reconstruction of dynamic objects with affine deformations in dynamic computerized tomography, J. Inverse Ill-Posed Probl., 22 (2014), 323-339. doi: 10.1515/jip-2012-0094.

[8]

B. N. Hahn, Efficient algorithms for linear dynamic inverse problems with known motion, Inverse Problems, 30 (2014), 035008, 20pp. doi: 10.1088/0266-5611/30/3/035008.

[9]

B. Hofmann, Regularization for Applied Inverse and Ill-posed Problems, Teubner, Leipzig, 1986. doi: 10.1007/978-3-322-93034-7.

[10]

A. Katsevich, An accurate approximate algorithm for motion compensation in two-dimensional tomography, Inverse Problems, 26 (2010), 065007, 16pp. doi: 10.1088/0266-5611/26/6/065007.

[11]

A. Katsevich, M. Silver and A. Zamayatin, Local tomography and the motion estimation problem, SIAM J. Imaging Sci., 4 (2011), 200-219. doi: 10.1137/100796728.

[12]

S. Kindermann and A. Leitão, On regularization methods for inverse problems of dynamic type, Numer. Func. Anal. Opt., 27 (2006), 139-160. doi: 10.1080/01630560600569973.

[13]

D. Le Bihan, C. Poupon, A. Amadon and F. Lethimonnier, Artifacts and pitfalls in diffusion MRI, JMRI - J. Magn. Reson. Im., 24 (2006), 478-488.

[14]

A. K. Louis, Inverse und Schlecht Gestellte Probleme, Teubner, Stuttgart, 1989. doi: 10.1007/978-3-322-84808-6.

[15]

A. K. Louis, Diffusion reconstruction from very noisy tomographic data, Inverse Probl. Imagine, 4 (2010), 675-683. doi: 10.3934/ipi.2010.4.675.

[16]

W. Lu and T. R. Mackie, Tomographic motion detection and correction directly in sinogram space, Phys. Med. Biol., 47 (2002), 1267-1284. doi: 10.1088/0031-9155/47/8/304.

[17]

S. J. McQuaid and B. F. Hutton, Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT, Eur. J. Nucl. Med. Mol. Imaging, 35 (2008), 1117-1123. doi: 10.1007/s00259-008-0718-0.

[18]

J. L. Müller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, Philadelphia, 2012.

[19]

F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, Chichester, 1986.

[20]

F. Qiao, T. Pan, J. W. Clark, O. R. Mawlawi, A motion-incorporated reconstruction method for gated PET studies, Phys. Med. Biol., 51 (2006), 3769-3783. doi: 10.1088/0031-9155/51/15/012.

[21]

U. Schmitt and A. K. Louis, Efficient algorithms for the regularization of dynamic inverse problems: I. Theory, Inverse Problems, 18 (2002), 645-658. doi: 10.1088/0266-5611/18/3/308.

[22]

U. Schmitt, A. K. Louis, C. Wolters and M. Vauhkonen, Efficient algorithms for the regularization of dynamic inverse problems: II. Applications, Inverse Problems, 18 (2002), 659-676. doi: 10.1088/0266-5611/18/3/309.

[23]

A. Shankaranarayanan, M. Wendt, J. S. Lewin and J. L. Duerk, Two-step navigatorless correction algorithm for radial k-space MRI acquisitions, Magn. Reson. Med., 45 (2001), 277-288.

[24]

L. Shepp, S. Hilal and R. Schulz, The tuning fork artifact in computerized tomography, Comput. Graph. Image Process., 10 (1979), 246-255. doi: 10.1016/0146-664X(79)90004-2.

show all references

References:
[1]

D. Atkinson, D. L. Hill, P. N. Stoyle, P. E. Summers, S. Clare, R. Bowtell and S. F. Keevil, Automatic compensation of motion artefacts in MRI, Magn. Reson. Med., 41 (1999), 163-170. doi: 10.1002/(SICI)1522-2594(199901)41:1<163::AID-MRM23>3.3.CO;2-0.

[2]

L. Desbat, S. Roux and P. Grangeat, Compensation of some time dependent deformations in tomography, IEEE Trans. Med. Imag., 26 (2007), 261-269. doi: 10.1109/TMI.2006.889743.

[3]

H. W. Engl and C. W. Groetsch, Inverse and Ill-Posed Problems, Academic Press, New York, 1986.

[4]

J. Fitzgerald and P.G. Danias, Effect of motion on cardiac SPECT imaging: Recognition and motion correction, J. Nucl. Cardiol., 8 (2001), 701-706. doi: 10.1067/mnc.2001.118694.

[5]

F. Gigengack, L. Ruthotto, M. Burger, C. H. Wolters, X. Jiang and K. P. Schäfers, Motion correction in dual gated cardiac PET using mass-preserving image registration, IEEE Trans. Med. Imag., 31 (2012), 698-712. doi: 10.1109/TMI.2011.2175402.

[6]

G. H. Glover and J. M. Pauly, Projection Reconstruction Techniques for reduction of motion effects in MRI, Mag. Reson. Med., 28 (1992), 275-289. doi: 10.1002/mrm.1910280209.

[7]

B. Hahn, Reconstruction of dynamic objects with affine deformations in dynamic computerized tomography, J. Inverse Ill-Posed Probl., 22 (2014), 323-339. doi: 10.1515/jip-2012-0094.

[8]

B. N. Hahn, Efficient algorithms for linear dynamic inverse problems with known motion, Inverse Problems, 30 (2014), 035008, 20pp. doi: 10.1088/0266-5611/30/3/035008.

[9]

B. Hofmann, Regularization for Applied Inverse and Ill-posed Problems, Teubner, Leipzig, 1986. doi: 10.1007/978-3-322-93034-7.

[10]

A. Katsevich, An accurate approximate algorithm for motion compensation in two-dimensional tomography, Inverse Problems, 26 (2010), 065007, 16pp. doi: 10.1088/0266-5611/26/6/065007.

[11]

A. Katsevich, M. Silver and A. Zamayatin, Local tomography and the motion estimation problem, SIAM J. Imaging Sci., 4 (2011), 200-219. doi: 10.1137/100796728.

[12]

S. Kindermann and A. Leitão, On regularization methods for inverse problems of dynamic type, Numer. Func. Anal. Opt., 27 (2006), 139-160. doi: 10.1080/01630560600569973.

[13]

D. Le Bihan, C. Poupon, A. Amadon and F. Lethimonnier, Artifacts and pitfalls in diffusion MRI, JMRI - J. Magn. Reson. Im., 24 (2006), 478-488.

[14]

A. K. Louis, Inverse und Schlecht Gestellte Probleme, Teubner, Stuttgart, 1989. doi: 10.1007/978-3-322-84808-6.

[15]

A. K. Louis, Diffusion reconstruction from very noisy tomographic data, Inverse Probl. Imagine, 4 (2010), 675-683. doi: 10.3934/ipi.2010.4.675.

[16]

W. Lu and T. R. Mackie, Tomographic motion detection and correction directly in sinogram space, Phys. Med. Biol., 47 (2002), 1267-1284. doi: 10.1088/0031-9155/47/8/304.

[17]

S. J. McQuaid and B. F. Hutton, Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT, Eur. J. Nucl. Med. Mol. Imaging, 35 (2008), 1117-1123. doi: 10.1007/s00259-008-0718-0.

[18]

J. L. Müller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, Philadelphia, 2012.

[19]

F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, Chichester, 1986.

[20]

F. Qiao, T. Pan, J. W. Clark, O. R. Mawlawi, A motion-incorporated reconstruction method for gated PET studies, Phys. Med. Biol., 51 (2006), 3769-3783. doi: 10.1088/0031-9155/51/15/012.

[21]

U. Schmitt and A. K. Louis, Efficient algorithms for the regularization of dynamic inverse problems: I. Theory, Inverse Problems, 18 (2002), 645-658. doi: 10.1088/0266-5611/18/3/308.

[22]

U. Schmitt, A. K. Louis, C. Wolters and M. Vauhkonen, Efficient algorithms for the regularization of dynamic inverse problems: II. Applications, Inverse Problems, 18 (2002), 659-676. doi: 10.1088/0266-5611/18/3/309.

[23]

A. Shankaranarayanan, M. Wendt, J. S. Lewin and J. L. Duerk, Two-step navigatorless correction algorithm for radial k-space MRI acquisitions, Magn. Reson. Med., 45 (2001), 277-288.

[24]

L. Shepp, S. Hilal and R. Schulz, The tuning fork artifact in computerized tomography, Comput. Graph. Image Process., 10 (1979), 246-255. doi: 10.1016/0146-664X(79)90004-2.

[1]

Simon Arridge, Pascal Fernsel, Andreas Hauptmann. Joint reconstruction and low-rank decomposition for dynamic inverse problems. Inverse Problems and Imaging, 2022, 16 (3) : 483-523. doi: 10.3934/ipi.2021059

[2]

Bernadette N. Hahn, Melina-Loren Kienle Garrido, Christian Klingenberg, Sandra Warnecke. Using the Navier-Cauchy equation for motion estimation in dynamic imaging. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022018

[3]

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391

[4]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[5]

Hao Zhang, Scott T. M. Dawson, Clarence W. Rowley, Eric A. Deem, Louis N. Cattafesta. Evaluating the accuracy of the dynamic mode decomposition. Journal of Computational Dynamics, 2020, 7 (1) : 35-56. doi: 10.3934/jcd.2020002

[6]

Zheng-Jian Bai, Xiao-Qing Jin, Seak-Weng Vong. On some inverse singular value problems with Toeplitz-related structure. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 187-192. doi: 10.3934/naco.2012.2.187

[7]

Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems and Imaging, 2008, 2 (2) : 271-290. doi: 10.3934/ipi.2008.2.271

[8]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics and Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[9]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[10]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems and Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[11]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[12]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[13]

Shanshan Wang, Yanxia Chen, Taohui Xiao, Lei Zhang, Xin Liu, Hairong Zheng. LANTERN: Learn analysis transform network for dynamic magnetic resonance imaging. Inverse Problems and Imaging, 2021, 15 (6) : 1363-1379. doi: 10.3934/ipi.2020051

[14]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[15]

Philipp Hungerländer, Barbara Kaltenbacher, Franz Rendl. Regularization of inverse problems via box constrained minimization. Inverse Problems and Imaging, 2020, 14 (3) : 437-461. doi: 10.3934/ipi.2020021

[16]

Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155

[17]

Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127

[18]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[19]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[20]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (244)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]