Citation: |
[1] |
G. Aubert and J.-F. Aujol, Modeling very oscillating signals, application to image processing, Appl. Math. Optim, 51 (2005), 163-182.doi: 10.1007/s00245-004-0812-z. |
[2] |
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations, Appl. Math. Sci., 147, Springer, Second Edition, 2006. |
[3] |
J.-F. Aujol, G. Aubert, L. Blanc-Féraud and A. Chambolle, Image decomposition into a bounded variation component and an oscillating component, J. Math. Imaging Vision, 22 (2005), 71-88.doi: 10.1007/s10851-005-4783-8. |
[4] |
J. F. Aujol and A. Chambolle, Dual norms and image decomposition models, International Journal of Computer Vision, 63 (2005), 85-104. |
[5] |
J.-F. Aujol and G. Gilboa, Constrained and SNR-based solutions for TV-Hilbert space image denoising, J. Math. Imaging Vis., 26 (2006), 217-237.doi: 10.1007/s10851-006-7801-6. |
[6] |
J.-F. Aujol, G. Gilboa, T. Chan and S. Osher, Structure-texture image decomposition-modeling, algorithms, and parameter selection, Int. J. Comput. Vis., 67 (2006), 111-136. |
[7] |
L. Bartholdi, T. Schick, N. Smale and S. Smale, Hodge theory on metric spaces, arXiv:0912.0284v1, 2009. |
[8] |
X. Bresson and T. F. Chan, Nonlocal Unsupervised Variational Image Segmentation Models, UCLA C.A.M. Report 08-67, 2008. |
[9] |
A. Buades, B. Coll and J.-M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.doi: 10.1137/040616024. |
[10] |
A. Buades, B. Coll and J.-M. Morel, Image Enhancement by Nonlocal Reverse Heat Equation, Technical Report 22, CMLA, 2006. |
[11] |
A. Buades, B. Coll and J.-M. Morel, Non-local means denoising, Image Processing On Line, 1 (2011).doi: 10.5201/ipol.2011.bcm_nlm. |
[12] |
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.doi: 10.1023/B:JMIV.0000011321.19549.88. |
[13] |
A. Chambolle and P. L. Lions, Image recovery via total variational minimization and related problems, Numer. Math., 76 (1997), 167-188.doi: 10.1007/s002110050258. |
[14] |
T. F. Chan and S. Esedoglu, Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math., 65 (2005), 1817-1837.doi: 10.1137/040604297. |
[15] |
T. F. Chan, A. Marquina and P. Mulet, High-order total variation based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.doi: 10.1137/S1064827598344169. |
[16] |
T. F. Chan and J. Shen, Image Processing and Analysis. Variational, PDE, Wavelet, and Stochastic Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.doi: 10.1137/1.9780898717877. |
[17] |
F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. |
[18] |
P. Getreuer and R.-O. Fatemi, Total Variation Denoising Using Split Bregman, Image Processing On Line, 2012.doi: 10.5201/ipol.2012.g-tvd. |
[19] |
G. Gilboa, J. Darbon, S. Osher and T. Chan, Nonlocal Convex Functionals for Image Regularization, Technical Report 06-57, UCLA CAM Report, 2006. |
[20] |
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630.doi: 10.1137/060669358. |
[21] |
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.doi: 10.1137/070698592. |
[22] |
G. Gilboa and S. Osher, Nonlocal evolutions for image regularization, Proceedings of SPIE, 6498, Computational Imaging V, 64980U, 2007.doi: 10.1117/12.714701. |
[23] |
G. Gilboa, N. Sochen and Y. Y. Zeevi., Estimation of optimal PDE-based denoising in the SNR sense, IEEE Trans. on Image Processing, 15 (2006), 2269-2280.doi: 10.1109/TIP.2006.875248. |
[24] |
Y. Jin, J. Jost and G. Wang, Nonlocal version of Osher-Solé-Vese model, J. Math. Imaging Vision, 44 (2012), 99-113.doi: 10.1007/s10851-011-0313-z. |
[25] |
Y. Jin, J. Jost and G. Wang, A new nonlocal $H^1$ model for image denoising, J. Math. Imaging Vision, 48 (2014), 93-105.doi: 10.1007/s10851-012-0395-2. |
[26] |
J. Jost, Equilibrium maps between metric spaces, Calc. Var., 2 (1994), 173-204.doi: 10.1007/BF01191341. |
[27] |
J. Jost, Riemannian Geometry and Geometric Analysis, Sixth edition, Universitext, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-21298-7. |
[28] |
M. Jung and L. A. Vese, Nonlocal variational image deblurring models in the presence of gaussian or impulse noise, Lecture Notes in Computer Science, 5567 (2009), 401-412.doi: 10.1007/978-3-642-02256-2_34. |
[29] |
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4 (2005), 1091-1115.doi: 10.1137/050622249. |
[30] |
M. Lebrun, An analysis and implementation of the BM3D image denoising method, Image Processing On Line, 2012.doi: 10.5201/ipol.2012.l-bm3d. |
[31] |
M. Lebrun and A. Leclaire, An implementation and detailed analysis of the K-SVD image denoising algorithm, Image Processing On Line, 2 (2012), 96-133.doi: 10.5201/ipol.2012.llm-ksvd. |
[32] |
Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators, Journal of Scientific Computing, 42 (2010), 185-197.doi: 10.1007/s10915-009-9320-2. |
[33] |
Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, 22, American Mathematical Society, Providence, RI, 2001. |
[34] |
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, Using geometry and iterated refinement for inverse problems (1): Total variation based image restoration, preprint. |
[35] |
S. J. Osher and S. Esedoglu, Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, Comm. Pure Appl. Math., 57 (2004), 1609-1626.doi: 10.1002/cpa.20045. |
[36] |
S. Osher and R. P. Fedkiw, Level set methods and dynamic implicit surfaces, Appl. Mech. Rev., 57 (2004), B15.doi: 10.1115/1.1760520. |
[37] |
S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimizaiton and the $H^{-1}$ norm, Multiscale Model. Simul., 1 (2003), 349-370.doi: 10.1137/S1540345902416247. |
[38] |
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, PAMI, 12 (1990), 629-639. |
[39] |
G. Peyré, Image processing with nonlocal spectral bases, SIAM Multiscale Modeling and Simulation, 7 (2008), 703-730.doi: 10.1137/07068881X. |
[40] |
G. Peyré, S. Bougleux and L. Cohen, Nonlocal regularization of inverse problems, in ECCV 8: European Conference on Computer Vision, Springer, Berlin, 2008, p578. |
[41] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F. |
[42] |
G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2009.doi: 10.1017/CBO9780511626319. |
[43] |
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Appl. Math. Sci., 167, Springer, New York, 2009. |
[44] |
A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems, Wiley, New York, 1977. |
[45] |
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Proceedings of the 6th IEEE International Conference on Computer Vision (ICCV'98), 1998, 839-846.doi: 10.1109/ICCV.1998.710815. |
[46] |
L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19 (2003), 553-572.doi: 10.1023/A:1025384832106. |
[47] |
J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart. 1998. |
[48] |
L. P. Yaroslavsky, Digital Picture Processing. An Introduction, Springer Seriesin Information Sciences, 9, Springer-Verlag, Berlin, 1985.doi: 10.1007/978-3-642-81929-2. |
[49] |
G. Yu and G. Sapiro, DCT image denoising: A simple and effective image denoising algorithm, Image Processing On Line, 2011.doi: 10.5201/ipol.2011.ys-dct. |
[50] |
J. Yuan, C. Schnörr and G. Steidl, Convex Hodge decomposition and regularization of image flows, J. Math. Imaging Vis., 33 (2009), 169-177.doi: 10.1007/s10851-008-0122-1. |
[51] |
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3 (2010), 253-276.doi: 10.1137/090746379. |
[52] |
X. Zhang and T. Chan, Wavelet inpainting by nonlocal total variation, Inverse Problems and Imaging, 4 (2010), 191-210.doi: 10.3934/ipi.2010.4.191. |
[53] |
D. Zhou and B. Schölkopf, A regularization framework for learning from graph data, in ICML Workshop on Stat. Relational Learning and Its Connections to Other Fields, 2004. |
[54] |
D. Zhou and B. Schölkopf, Regularization on discrete spaces, in Pattern Recognition, Proceedings of the 27th DAGM Symposium, Berlin, Germany, 2005, 361-369. |