May  2015, 9(2): 431-446. doi: 10.3934/ipi.2015.9.431

Empirical average-case relation between undersampling and sparsity in X-ray CT

1. 

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, 2800 Kgs. Lyngby, Denmark, Denmark

2. 

Department of Radiology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, United States, United States

Received  July 2014 Revised  January 2015 Published  March 2015

In X-ray computed tomography (CT) it is generally acknowledged that reconstruction methods exploiting image sparsity allow reconstruction from a significantly reduced number of projections. The use of such reconstruction methods is inspired by recent progress in compressed sensing (CS). However, the CS framework provides neither guarantees of accurate CT reconstruction, nor any relation between sparsity and a sufficient number of measurements for recovery, i.e., perfect reconstruction from noise-free data. We consider reconstruction through 1-norm minimization, as proposed in CS, from data obtained using a standard CT fan-beam sampling pattern. In empirical simulation studies we establish quantitatively a relation between the image sparsity and the sufficient number of measurements for recovery within image classes motivated by tomographic applications. We show empirically that the specific relation depends on the image class and in many cases exhibits a sharp phase transition as seen in CS, i.e., same-sparsity images require the same number of projections for recovery. Finally we demonstrate that the relation holds independently of image size and is robust to small amounts of additive Gaussian white noise.
Citation: Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems & Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431
References:
[1]

H. H. Barrett and K. J. Myers, Foundations of Image Science,, John Wiley & Sons, (2004).   Google Scholar

[2]

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari and X. Pan, Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,, Phys. Med. Biol., 55 (2010), 6575.  doi: 10.1088/0031-9155/55/22/001.  Google Scholar

[3]

E. Candès and J. Romberg, Sparsity and incoherence in compressive sampling,, Inverse Probl., 23 (2007), 969.  doi: 10.1088/0266-5611/23/3/008.  Google Scholar

[4]

E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,, IEEE Trans. Inf. Theory, 52 (2006), 489.  doi: 10.1109/TIT.2005.862083.  Google Scholar

[5]

E. J. Candès, J. K. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,, Commun. Pure Appl. Math., 59 (2006), 1207.  doi: 10.1002/cpa.20124.  Google Scholar

[6]

A. Cohen, W. Dahmen and R. DeVore, Compressed sensing and best k-term approximation,, J. Am. Math. Soc., 22 (2009), 211.  doi: 10.1090/S0894-0347-08-00610-3.  Google Scholar

[7]

D. Donoho and J. Tanner, Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367 (2009), 4273.  doi: 10.1098/rsta.2009.0152.  Google Scholar

[8]

D. L. Donoho, Compressed sensing,, IEEE Trans. Inf. Theory, 52 (2006), 1289.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[9]

D. L. Donoho and M. Elad, Optimally sparse representation in general (non-orthogonal) dictionaries via L1 minimization,, Proc. Natl. Acad. Sci. U.S.A., 100 (2003), 2197.  doi: 10.1073/pnas.0437847100.  Google Scholar

[10]

D. L. Donoho and J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming,, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 9446.  doi: 10.1073/pnas.0502269102.  Google Scholar

[11]

D. Donoho and J. Tanner, Neighborliness of randomly projected simplices in high dimensions,, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 9452.  doi: 10.1073/pnas.0502258102.  Google Scholar

[12]

C. Dossal, G. Peyré and J. Fadili, A numerical exploration of compressed sampling recovery,, Linear Algebra Appl., 432 (2010), 1663.  doi: 10.1016/j.laa.2009.11.022.  Google Scholar

[13]

L. A. Feldkamp, L. C. Davis and J. W. Kress, Practical cone-beam algorithm,, J. Opt. Soc. Am. A, 1 (1984), 612.  doi: 10.1364/JOSAA.1.000612.  Google Scholar

[14]

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,, Springer, (2013).  doi: 10.1007/978-0-8176-4948-7.  Google Scholar

[15]

E. Gouillart, F. Krzakala, M. Mézard and L. Zdeborová, Belief-propagation reconstruction for discrete tomography,, Inverse Probl., 29 (2013).  doi: 10.1088/0266-5611/29/3/035003.  Google Scholar

[16]

M. Grasmair, M. Haltmeier and O. Scherzer, Necessary and sufficient conditions for linear convergence of L1-regularization,, Commun. Pure Appl. Math., 64 (2011), 161.  doi: 10.1002/cpa.20350.  Google Scholar

[17]

J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations,, Yale University Press, (1953).  doi: 10.1063/1.3061337.  Google Scholar

[18]

X. Han, J. Bian, D. R. Eaker, T. L. Kline, E. Y. Sidky, E. L. Ritman and X. Pan, Algorithm-enabled low-dose micro-CT imaging,, IEEE Trans. Med. Imaging, 30 (2011), 606.  doi: 10.1109/TMI.2010.2089695.  Google Scholar

[19]

P. C. Hansen and M. Saxild-Hansen, AIR Tools - A MATLAB package of algebraic iterative reconstruction methods,, J. Comput. Appl. Math., 236 (2012), 2167.  doi: 10.1016/j.cam.2011.09.039.  Google Scholar

[20]

P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical aspects of linear inversion,, SIAM, (1998).  doi: 10.1137/1.9780898719697.  Google Scholar

[21]

G. T. Herman and A. Kuba (eds.), Discrete Tomography: Foundations, Algorithms, and Applications,, Springer, (1999).  doi: 10.1007/978-1-4612-1568-4.  Google Scholar

[22]

J. S. Jørgensen and E. Y. Sidky, How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray CT,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., ().   Google Scholar

[23]

J. S. Jørgensen, E. Y. Sidky and X. Pan, Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in x-ray CT,, IEEE Trans. Med. Imaging, 32 (2013), 460.  doi: 10.1109/TMI.2012.2230185.  Google Scholar

[24]

J. Jørgensen, C. Kruschel and D. Lorenz, Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT,, Inverse Probl. Sci. Eng., (2014), 1.  doi: 10.1080/17415977.2014.986724.  Google Scholar

[25]

M. Li, H. Yang and H. Kudo, An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,, Phys. Med. Biol., 47 (2002), 2599.  doi: 10.1088/0031-9155/47/15/303.  Google Scholar

[26]

H. Monajemi, S. Jafarpour, M. Gavish, Stat-330-CME-362 Collaboration and D. L. Donoho, Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices,, Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 1181.  doi: 10.1073/pnas.1219540110.  Google Scholar

[27]

MOSEK ApS, MOSEK Optimization Software, version 6.0.0.122,, 2011. Available from: , ().   Google Scholar

[28]

F. Natterer, The Mathematics of Computerized Tomography,, John Wiley & Sons, (1986).   Google Scholar

[29]

D. Needell and R. Ward, Stable image reconstruction using total variation minimization,, SIAM J. Imaging Sci., 6 (2013), 1035.  doi: 10.1137/120868281.  Google Scholar

[30]

X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?,, Inverse Probl., 25 (2009).  doi: 10.1088/0266-5611/25/12/123009.  Google Scholar

[31]

S. Petra and C. Schnörr, Average case recovery analysis of tomographic compressive sensing,, Linear Algebra Appl., 441 (2014), 168.  doi: 10.1016/j.laa.2013.06.034.  Google Scholar

[32]

N. Pustelnik, C. Dossal, F. Turcu, Y. Berthoumieu and P. Ricoux, A greedy algorithm to extract sparsity degree for L1/L0-equivalence in a deterministic context,, in Proc. EUSIPCO, (2012).   Google Scholar

[33]

I. Reiser and R. M. Nishikawa, Task-based assessment of breast tomosynthesis: Effect of acquisition parameters and quantum noise,, Med. Phys., 37 (2010), 1591.  doi: 10.1118/1.3357288.  Google Scholar

[34]

L. Ritschl, F. Bergner, C. Fleischmann and M. Kachelrieß, Improved total variation-based CT image reconstruction applied to clinical data,, Phys. Med. Biol., 56 (2011), 1545.  doi: 10.1088/0031-9155/56/6/003.  Google Scholar

[35]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[36]

E. Y. Sidky, M. A. Anastasio and X. Pan, Image reconstruction exploiting object sparsity in boundary-enhanced X-ray phase-contrast tomography,, Opt. Express, 18 (2010), 10404.  doi: 10.1364/OE.18.010404.  Google Scholar

[37]

E. Y. Sidky, C.-M. Kao and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,, J. Xray Sci. Technol., 14 (2006), 119.   Google Scholar

[38]

E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,, Phys. Med. Biol., 53 (2008), 4777.  doi: 10.1088/0031-9155/53/17/021.  Google Scholar

[39]

A. M. Tillmann and M. E. Pfetsch, The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing,, IEEE Trans. Inf. Theory, 60 (2014), 1248.  doi: 10.1109/TIT.2013.2290112.  Google Scholar

[40]

L. Yu, X. Liu, S. Leng, J. M. Kofler, J. C. Ramirez-Giraldo, M. Qu, J. Christner, J. G. Fletcher and C. H. McCollough, Radiation dose reduction in computed tomography: Techniques and future perspective,, Imaging Med., 1 (2009), 65.  doi: 10.2217/iim.09.5.  Google Scholar

show all references

References:
[1]

H. H. Barrett and K. J. Myers, Foundations of Image Science,, John Wiley & Sons, (2004).   Google Scholar

[2]

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari and X. Pan, Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,, Phys. Med. Biol., 55 (2010), 6575.  doi: 10.1088/0031-9155/55/22/001.  Google Scholar

[3]

E. Candès and J. Romberg, Sparsity and incoherence in compressive sampling,, Inverse Probl., 23 (2007), 969.  doi: 10.1088/0266-5611/23/3/008.  Google Scholar

[4]

E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,, IEEE Trans. Inf. Theory, 52 (2006), 489.  doi: 10.1109/TIT.2005.862083.  Google Scholar

[5]

E. J. Candès, J. K. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,, Commun. Pure Appl. Math., 59 (2006), 1207.  doi: 10.1002/cpa.20124.  Google Scholar

[6]

A. Cohen, W. Dahmen and R. DeVore, Compressed sensing and best k-term approximation,, J. Am. Math. Soc., 22 (2009), 211.  doi: 10.1090/S0894-0347-08-00610-3.  Google Scholar

[7]

D. Donoho and J. Tanner, Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367 (2009), 4273.  doi: 10.1098/rsta.2009.0152.  Google Scholar

[8]

D. L. Donoho, Compressed sensing,, IEEE Trans. Inf. Theory, 52 (2006), 1289.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[9]

D. L. Donoho and M. Elad, Optimally sparse representation in general (non-orthogonal) dictionaries via L1 minimization,, Proc. Natl. Acad. Sci. U.S.A., 100 (2003), 2197.  doi: 10.1073/pnas.0437847100.  Google Scholar

[10]

D. L. Donoho and J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming,, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 9446.  doi: 10.1073/pnas.0502269102.  Google Scholar

[11]

D. Donoho and J. Tanner, Neighborliness of randomly projected simplices in high dimensions,, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 9452.  doi: 10.1073/pnas.0502258102.  Google Scholar

[12]

C. Dossal, G. Peyré and J. Fadili, A numerical exploration of compressed sampling recovery,, Linear Algebra Appl., 432 (2010), 1663.  doi: 10.1016/j.laa.2009.11.022.  Google Scholar

[13]

L. A. Feldkamp, L. C. Davis and J. W. Kress, Practical cone-beam algorithm,, J. Opt. Soc. Am. A, 1 (1984), 612.  doi: 10.1364/JOSAA.1.000612.  Google Scholar

[14]

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,, Springer, (2013).  doi: 10.1007/978-0-8176-4948-7.  Google Scholar

[15]

E. Gouillart, F. Krzakala, M. Mézard and L. Zdeborová, Belief-propagation reconstruction for discrete tomography,, Inverse Probl., 29 (2013).  doi: 10.1088/0266-5611/29/3/035003.  Google Scholar

[16]

M. Grasmair, M. Haltmeier and O. Scherzer, Necessary and sufficient conditions for linear convergence of L1-regularization,, Commun. Pure Appl. Math., 64 (2011), 161.  doi: 10.1002/cpa.20350.  Google Scholar

[17]

J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations,, Yale University Press, (1953).  doi: 10.1063/1.3061337.  Google Scholar

[18]

X. Han, J. Bian, D. R. Eaker, T. L. Kline, E. Y. Sidky, E. L. Ritman and X. Pan, Algorithm-enabled low-dose micro-CT imaging,, IEEE Trans. Med. Imaging, 30 (2011), 606.  doi: 10.1109/TMI.2010.2089695.  Google Scholar

[19]

P. C. Hansen and M. Saxild-Hansen, AIR Tools - A MATLAB package of algebraic iterative reconstruction methods,, J. Comput. Appl. Math., 236 (2012), 2167.  doi: 10.1016/j.cam.2011.09.039.  Google Scholar

[20]

P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical aspects of linear inversion,, SIAM, (1998).  doi: 10.1137/1.9780898719697.  Google Scholar

[21]

G. T. Herman and A. Kuba (eds.), Discrete Tomography: Foundations, Algorithms, and Applications,, Springer, (1999).  doi: 10.1007/978-1-4612-1568-4.  Google Scholar

[22]

J. S. Jørgensen and E. Y. Sidky, How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray CT,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., ().   Google Scholar

[23]

J. S. Jørgensen, E. Y. Sidky and X. Pan, Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in x-ray CT,, IEEE Trans. Med. Imaging, 32 (2013), 460.  doi: 10.1109/TMI.2012.2230185.  Google Scholar

[24]

J. Jørgensen, C. Kruschel and D. Lorenz, Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT,, Inverse Probl. Sci. Eng., (2014), 1.  doi: 10.1080/17415977.2014.986724.  Google Scholar

[25]

M. Li, H. Yang and H. Kudo, An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,, Phys. Med. Biol., 47 (2002), 2599.  doi: 10.1088/0031-9155/47/15/303.  Google Scholar

[26]

H. Monajemi, S. Jafarpour, M. Gavish, Stat-330-CME-362 Collaboration and D. L. Donoho, Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices,, Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 1181.  doi: 10.1073/pnas.1219540110.  Google Scholar

[27]

MOSEK ApS, MOSEK Optimization Software, version 6.0.0.122,, 2011. Available from: , ().   Google Scholar

[28]

F. Natterer, The Mathematics of Computerized Tomography,, John Wiley & Sons, (1986).   Google Scholar

[29]

D. Needell and R. Ward, Stable image reconstruction using total variation minimization,, SIAM J. Imaging Sci., 6 (2013), 1035.  doi: 10.1137/120868281.  Google Scholar

[30]

X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?,, Inverse Probl., 25 (2009).  doi: 10.1088/0266-5611/25/12/123009.  Google Scholar

[31]

S. Petra and C. Schnörr, Average case recovery analysis of tomographic compressive sensing,, Linear Algebra Appl., 441 (2014), 168.  doi: 10.1016/j.laa.2013.06.034.  Google Scholar

[32]

N. Pustelnik, C. Dossal, F. Turcu, Y. Berthoumieu and P. Ricoux, A greedy algorithm to extract sparsity degree for L1/L0-equivalence in a deterministic context,, in Proc. EUSIPCO, (2012).   Google Scholar

[33]

I. Reiser and R. M. Nishikawa, Task-based assessment of breast tomosynthesis: Effect of acquisition parameters and quantum noise,, Med. Phys., 37 (2010), 1591.  doi: 10.1118/1.3357288.  Google Scholar

[34]

L. Ritschl, F. Bergner, C. Fleischmann and M. Kachelrieß, Improved total variation-based CT image reconstruction applied to clinical data,, Phys. Med. Biol., 56 (2011), 1545.  doi: 10.1088/0031-9155/56/6/003.  Google Scholar

[35]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[36]

E. Y. Sidky, M. A. Anastasio and X. Pan, Image reconstruction exploiting object sparsity in boundary-enhanced X-ray phase-contrast tomography,, Opt. Express, 18 (2010), 10404.  doi: 10.1364/OE.18.010404.  Google Scholar

[37]

E. Y. Sidky, C.-M. Kao and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,, J. Xray Sci. Technol., 14 (2006), 119.   Google Scholar

[38]

E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,, Phys. Med. Biol., 53 (2008), 4777.  doi: 10.1088/0031-9155/53/17/021.  Google Scholar

[39]

A. M. Tillmann and M. E. Pfetsch, The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing,, IEEE Trans. Inf. Theory, 60 (2014), 1248.  doi: 10.1109/TIT.2013.2290112.  Google Scholar

[40]

L. Yu, X. Liu, S. Leng, J. M. Kofler, J. C. Ramirez-Giraldo, M. Qu, J. Christner, J. G. Fletcher and C. H. McCollough, Radiation dose reduction in computed tomography: Techniques and future perspective,, Imaging Med., 1 (2009), 65.  doi: 10.2217/iim.09.5.  Google Scholar

[1]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[2]

Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391

[3]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[4]

Ying Zhang, Ling Ma, Zheng-Hai Huang. On phaseless compressed sensing with partially known support. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-8. doi: 10.3934/jimo.2019014

[5]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems & Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[6]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[7]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[8]

Shousheng Luo, Tie Zhou. Superiorization of EM algorithm and its application in Single-Photon Emission Computed Tomography(SPECT). Inverse Problems & Imaging, 2014, 8 (1) : 223-246. doi: 10.3934/ipi.2014.8.223

[9]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems & Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[10]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems & Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[11]

Shui-Nee Chow, Ke Yin, Hao-Min Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 79-102. doi: 10.3934/ipi.2014.8.79

[12]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[13]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems & Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[14]

Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems & Imaging, 2019, 13 (3) : 449-460. doi: 10.3934/ipi.2019022

[15]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[16]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems & Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[17]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[18]

Li Shen, Eric Todd Quinto, Shiqiang Wang, Ming Jiang. Simultaneous reconstruction and segmentation with the Mumford-Shah functional for electron tomography. Inverse Problems & Imaging, 2018, 12 (6) : 1343-1364. doi: 10.3934/ipi.2018056

[19]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems & Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

[20]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (10)

[Back to Top]