May  2015, 9(2): 447-467. doi: 10.3934/ipi.2015.9.447

4D-CT reconstruction with unified spatial-temporal patch-based regularization

1. 

The Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Manchester, M13 9PL, United Kingdom, United Kingdom, United Kingdom, United Kingdom

2. 

School of Mathematics, The University of Manchester, Alan Turing Building, Manchester, M13 9PL, United Kingdom, United Kingdom

3. 

iMinds-Vision Lab, The University of Antwerp, Wilrijk, B-2610, Belgium

4. 

Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut (PSI), Villigen, 5232, Switzerland

Received  July 2013 Revised  April 2014 Published  March 2015

In this paper, we consider a limited data reconstruction problem for temporarily evolving computed tomography (CT), where some regions are static during the whole scan and some are dynamic (intensely or slowly changing). When motion occurs during a tomographic experiment one would like to minimize the number of projections used and reconstruct the image iteratively. To ensure stability of the iterative method spatial and temporal constraints are highly desirable. Here, we present a novel spatial-temporal regularization approach where all time frames are reconstructed collectively as a unified function of space and time. Our method has two main differences from the state-of-the-art spatial-temporal regularization methods. Firstly, all available temporal information is used to improve the spatial resolution of each time frame. Secondly, our method does not treat spatial and temporal penalty terms separately but rather unifies them in one regularization term. Additionally we optimize the temporal smoothing part of the method by considering the non-local patches which are most likely to belong to one intensity class. This modification significantly improves the signal-to-noise ratio of the reconstructed images and reduces computational time. The proposed approach is used in combination with golden ratio sampling of the projection data which allows one to find a better trade-off between temporal and spatial resolution scenarios.
Citation: Daniil Kazantsev, William M. Thompson, William R. B. Lionheart, Geert Van Eyndhoven, Anders P. Kaestner, Katherine J. Dobson, Philip J. Withers, Peter D. Lee. 4D-CT reconstruction with unified spatial-temporal patch-based regularization. Inverse Problems & Imaging, 2015, 9 (2) : 447-467. doi: 10.3934/ipi.2015.9.447
References:
[1]

S. Bougleux, G. Peyre and L. Cohen, Non-local regularization of inverse problems,, Inverse Probl. Imaging, 5 (2011), 511.  doi: 10.3934/ipi.2011.5.511.  Google Scholar

[2]

K. S. Brown, S. Schluter, A. Sheppard and D. Wildenschild, On the challenges of measuring interfacial characteristics of three-phase fluid flow with x-ray microtomography,, Journal of Microscopy, 253 (2014), 171.  doi: 10.1111/jmi.12106.  Google Scholar

[3]

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms with a new one,, Multiscale Model. Simul., 4 (2005), 490.  doi: 10.1137/040616024.  Google Scholar

[4]

C. L. Byrne, Applied Iterative Methods,, Natick, (2008).  doi: 10.1201/b10651.  Google Scholar

[5]

P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing,, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, (2011), 185.  doi: 10.1007/978-1-4419-9569-8_10.  Google Scholar

[6]

H. Gao, J-F. Cai, Z. Shen and H. Zhao, Robust principal component analysis-based four-dimensional computed tomography,, Phys Med. Biol., 56 (2011), 3181.  doi: 10.1088/0031-9155/56/11/002.  Google Scholar

[7]

X. Jia, Y. Lou, B. Dong, Z. Tian and S. Jiang, 4D computed tomography reconstruction from few-projection data via temporal non-local regularization,, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010, (2010), 143.  doi: 10.1007/978-3-642-15705-9_18.  Google Scholar

[8]

A. P. Kaestner, S. Hartmann, G. Kuhne, G. Frei, C. Grunzweig, L. Josic, F. Schmid and E. H. Lehmann, The ICON beamline - a facility for cold neutron imaging at SINQ,, Nuclear Instruments and Methods in Physics Research, 659 (2011), 387.  doi: 10.1016/j.nima.2011.08.022.  Google Scholar

[9]

A. P. Kaestner, B. Muench, P. Trtik and L. G. Butler, Spatio-temporal computed tomography of dynamic processes,, SPIE Optical Engineering, 50 (2011), 1.   Google Scholar

[10]

J. Kaipio and E. Somersalo, Statistical inverse problems: discretization, model reduction and inverse crimes,, Journal of Computational and Applied Mathematics, 198 (2007), 493.  doi: 10.1016/j.cam.2005.09.027.  Google Scholar

[11]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging,, IEEE Press, (1998).  doi: 10.1137/1.9780898719277.  Google Scholar

[12]

D. Kazantsev, W. R. B. Lionheart, P. J. Withers and P. D. Lee, GPU accelerated 4D-CT reconstruction using higher order PDE regularization in spatial and temporal domains,, in Proc. CMSSE, (2013), 843.   Google Scholar

[13]

D. Kazantsev, S. R. Arridge, S. Pedemonte, A. Bousse, K. Erlandsson, B. F. Hutton and S. Ourselin, An anatomically driven anisotropic diffusion filtering method for 3D SPECT reconstruction,, Phys Med. Biol., 57 (2012), 3793.  doi: 10.1088/0031-9155/57/12/3793.  Google Scholar

[14]

T. Kohler, A projection access scheme for iterative reconstruction based on the golden section,, in IEEE Symposium Conference Record Nuclear Science 2004, (2004), 3961.  doi: 10.1109/NSSMIC.2004.1466745.  Google Scholar

[15]

D. S. Lalush and M. N. Wernick, Iterative image reconstruction,, in Emission Tomography (ed. Mark T. Madsen), (2004), 443.  doi: 10.1016/B978-012744482-6/50024-7.  Google Scholar

[16]

D. S. Lalush and B. M. W. Tsui, Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT,, Phys Med. Biol., 43 (1998), 875.  doi: 10.1088/0031-9155/43/4/015.  Google Scholar

[17]

S. Z. Li, Markov Random Field Modeling in Image Analysis,, Springer, (2009).  doi: 10.1007/978-1-84800-279-1.  Google Scholar

[18]

J. Nocedal and S. Wright, Numerical Optimization,, Springer, (2006).  doi: 10.1007/978-0-387-40065-5.  Google Scholar

[19]

W. J. Palenstijn, K. J. Batenburg and J. Sijbers, Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs),, J. of Struct. Biol., 176 (2011), 250.  doi: 10.1016/j.jsb.2011.07.017.  Google Scholar

[20]

, PB regularization package (open-source code),, , ().   Google Scholar

[21]

K. Perlin, Improving noise,, ACM T. Graphic., 21 (2002), 681.  doi: 10.1145/566654.566636.  Google Scholar

[22]

J. Qi and R. M. Leahy, Iterative reconstruction techniques in emission computed tomography,, Phys Med. Biol., 51 (2006).  doi: 10.1088/0031-9155/51/15/R01.  Google Scholar

[23]

A. Rahmim, J. Tang and H. Zaidi, Four-dimensional (4D) image reconstruction strategies in dynamic PET: Beyond conventional independent frame reconstruction,, Med. Phys., 36 (2009), 3654.  doi: 10.1118/1.3160108.  Google Scholar

[24]

L. Ritschl, S. Sawall, M. Knaup, A. Hess and M. Kachelrieß, Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior,, Phys Med. Biol., 57 (2012), 1517.  doi: 10.1088/0031-9155/57/6/1517.  Google Scholar

[25]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D., 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[26]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson and J. Banhart, Advances in neutron radiography and tomography,, J. Phys. D: Appl. Phys., 42 (2009), 1.  doi: 10.1088/0022-3727/42/24/243001.  Google Scholar

[27]

W. M. Thompson, W. R. Lionheart and E. J. Morton, Real-Time Imaging with a high speed X-Ray CT system,, in Proc. 6th International Symposium on Process Tomography, (2012).   Google Scholar

[28]

G. Van Eyndhoven, K. J. Batenburg and J. Sijbers, Region-based iterative reconstruction of structurally changing objects in CT,, IEEE Trans. on Image Process, 23 (2014), 909.  doi: 10.1109/TIP.2013.2297024.  Google Scholar

[29]

H. Wu, A. Maier, R. Fahrig and J. Hornegger, Spatial-temporal total variation regularization (STTVR) for 4D-CT reconstruction,, Proc. SPIE, 8313 (2012), 237.  doi: 10.1117/12.911162.  Google Scholar

[30]

G. Wang and J. Qi, Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization,, IEEE Transactions on Medical Imaging, 31 (2012), 2194.  doi: 10.1109/tmi.2012.2211378.  Google Scholar

[31]

Z. Yang and M. Jacob, Nonlocal regularization of inverse problems: A unified variational framework,, IEEE Trans. on Image Process, 22 (2013), 3192.  doi: 10.1109/tip.2012.2216278.  Google Scholar

[32]

Z. Yang and M. Jacob, Robust non-local regularization framework for motion compensated dynamic imaging without explicit motion estimation,, in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), (2012), 1056.  doi: 10.1109/ISBI.2012.6235740.  Google Scholar

show all references

References:
[1]

S. Bougleux, G. Peyre and L. Cohen, Non-local regularization of inverse problems,, Inverse Probl. Imaging, 5 (2011), 511.  doi: 10.3934/ipi.2011.5.511.  Google Scholar

[2]

K. S. Brown, S. Schluter, A. Sheppard and D. Wildenschild, On the challenges of measuring interfacial characteristics of three-phase fluid flow with x-ray microtomography,, Journal of Microscopy, 253 (2014), 171.  doi: 10.1111/jmi.12106.  Google Scholar

[3]

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms with a new one,, Multiscale Model. Simul., 4 (2005), 490.  doi: 10.1137/040616024.  Google Scholar

[4]

C. L. Byrne, Applied Iterative Methods,, Natick, (2008).  doi: 10.1201/b10651.  Google Scholar

[5]

P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing,, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, (2011), 185.  doi: 10.1007/978-1-4419-9569-8_10.  Google Scholar

[6]

H. Gao, J-F. Cai, Z. Shen and H. Zhao, Robust principal component analysis-based four-dimensional computed tomography,, Phys Med. Biol., 56 (2011), 3181.  doi: 10.1088/0031-9155/56/11/002.  Google Scholar

[7]

X. Jia, Y. Lou, B. Dong, Z. Tian and S. Jiang, 4D computed tomography reconstruction from few-projection data via temporal non-local regularization,, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010, (2010), 143.  doi: 10.1007/978-3-642-15705-9_18.  Google Scholar

[8]

A. P. Kaestner, S. Hartmann, G. Kuhne, G. Frei, C. Grunzweig, L. Josic, F. Schmid and E. H. Lehmann, The ICON beamline - a facility for cold neutron imaging at SINQ,, Nuclear Instruments and Methods in Physics Research, 659 (2011), 387.  doi: 10.1016/j.nima.2011.08.022.  Google Scholar

[9]

A. P. Kaestner, B. Muench, P. Trtik and L. G. Butler, Spatio-temporal computed tomography of dynamic processes,, SPIE Optical Engineering, 50 (2011), 1.   Google Scholar

[10]

J. Kaipio and E. Somersalo, Statistical inverse problems: discretization, model reduction and inverse crimes,, Journal of Computational and Applied Mathematics, 198 (2007), 493.  doi: 10.1016/j.cam.2005.09.027.  Google Scholar

[11]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging,, IEEE Press, (1998).  doi: 10.1137/1.9780898719277.  Google Scholar

[12]

D. Kazantsev, W. R. B. Lionheart, P. J. Withers and P. D. Lee, GPU accelerated 4D-CT reconstruction using higher order PDE regularization in spatial and temporal domains,, in Proc. CMSSE, (2013), 843.   Google Scholar

[13]

D. Kazantsev, S. R. Arridge, S. Pedemonte, A. Bousse, K. Erlandsson, B. F. Hutton and S. Ourselin, An anatomically driven anisotropic diffusion filtering method for 3D SPECT reconstruction,, Phys Med. Biol., 57 (2012), 3793.  doi: 10.1088/0031-9155/57/12/3793.  Google Scholar

[14]

T. Kohler, A projection access scheme for iterative reconstruction based on the golden section,, in IEEE Symposium Conference Record Nuclear Science 2004, (2004), 3961.  doi: 10.1109/NSSMIC.2004.1466745.  Google Scholar

[15]

D. S. Lalush and M. N. Wernick, Iterative image reconstruction,, in Emission Tomography (ed. Mark T. Madsen), (2004), 443.  doi: 10.1016/B978-012744482-6/50024-7.  Google Scholar

[16]

D. S. Lalush and B. M. W. Tsui, Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT,, Phys Med. Biol., 43 (1998), 875.  doi: 10.1088/0031-9155/43/4/015.  Google Scholar

[17]

S. Z. Li, Markov Random Field Modeling in Image Analysis,, Springer, (2009).  doi: 10.1007/978-1-84800-279-1.  Google Scholar

[18]

J. Nocedal and S. Wright, Numerical Optimization,, Springer, (2006).  doi: 10.1007/978-0-387-40065-5.  Google Scholar

[19]

W. J. Palenstijn, K. J. Batenburg and J. Sijbers, Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs),, J. of Struct. Biol., 176 (2011), 250.  doi: 10.1016/j.jsb.2011.07.017.  Google Scholar

[20]

, PB regularization package (open-source code),, , ().   Google Scholar

[21]

K. Perlin, Improving noise,, ACM T. Graphic., 21 (2002), 681.  doi: 10.1145/566654.566636.  Google Scholar

[22]

J. Qi and R. M. Leahy, Iterative reconstruction techniques in emission computed tomography,, Phys Med. Biol., 51 (2006).  doi: 10.1088/0031-9155/51/15/R01.  Google Scholar

[23]

A. Rahmim, J. Tang and H. Zaidi, Four-dimensional (4D) image reconstruction strategies in dynamic PET: Beyond conventional independent frame reconstruction,, Med. Phys., 36 (2009), 3654.  doi: 10.1118/1.3160108.  Google Scholar

[24]

L. Ritschl, S. Sawall, M. Knaup, A. Hess and M. Kachelrieß, Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior,, Phys Med. Biol., 57 (2012), 1517.  doi: 10.1088/0031-9155/57/6/1517.  Google Scholar

[25]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D., 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[26]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson and J. Banhart, Advances in neutron radiography and tomography,, J. Phys. D: Appl. Phys., 42 (2009), 1.  doi: 10.1088/0022-3727/42/24/243001.  Google Scholar

[27]

W. M. Thompson, W. R. Lionheart and E. J. Morton, Real-Time Imaging with a high speed X-Ray CT system,, in Proc. 6th International Symposium on Process Tomography, (2012).   Google Scholar

[28]

G. Van Eyndhoven, K. J. Batenburg and J. Sijbers, Region-based iterative reconstruction of structurally changing objects in CT,, IEEE Trans. on Image Process, 23 (2014), 909.  doi: 10.1109/TIP.2013.2297024.  Google Scholar

[29]

H. Wu, A. Maier, R. Fahrig and J. Hornegger, Spatial-temporal total variation regularization (STTVR) for 4D-CT reconstruction,, Proc. SPIE, 8313 (2012), 237.  doi: 10.1117/12.911162.  Google Scholar

[30]

G. Wang and J. Qi, Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization,, IEEE Transactions on Medical Imaging, 31 (2012), 2194.  doi: 10.1109/tmi.2012.2211378.  Google Scholar

[31]

Z. Yang and M. Jacob, Nonlocal regularization of inverse problems: A unified variational framework,, IEEE Trans. on Image Process, 22 (2013), 3192.  doi: 10.1109/tip.2012.2216278.  Google Scholar

[32]

Z. Yang and M. Jacob, Robust non-local regularization framework for motion compensated dynamic imaging without explicit motion estimation,, in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), (2012), 1056.  doi: 10.1109/ISBI.2012.6235740.  Google Scholar

[1]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[2]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[3]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[4]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[5]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[8]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[9]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[13]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[14]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[15]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[16]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[17]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[18]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[Back to Top]