May  2015, 9(2): 469-478. doi: 10.3934/ipi.2015.9.469

Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data

1. 

Department of Mathematics, Statistics and Physics, Wichita State University, Wichita, KS 67260, United States

Received  April 2014 Revised  January 2015 Published  March 2015

To show increasing stability in the problem of recovering potential $c \in C^1(\Omega)$ in the Schrödinger equation with the given partial Cauchy data when energy frequency $k$ is growing, we will obtain some bounds for $c$ which can be viewed as an evidence of such phenomenon. The proof uses almost exponential solutions and methods of reflection.
Citation: Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1998), 153.   Google Scholar

[2]

L. D. Faddeev, Growing solutions of the Schrödinger equation,, Dokl. Akad. Nauk SSSR, 165 (1965), 514.   Google Scholar

[3]

P. Hähner, A periodic Faddeev-type solution operator,, J. Diff. Equat., 128 (1996), 300.  doi: 10.1006/jdeq.1996.0096.  Google Scholar

[4]

L. Hörmander, Linear Partial Differential Operators,, Springer-Verlag, (1976).   Google Scholar

[5]

M. Isaev and R. Novikov, Energy and regularity dependent stability estimates for the Gelfand's inverse problem in multi dimensions,, J. Inverse Ill-Posed Problems, 20 (2012), 313.  doi: 10.1155/2013/318154.  Google Scholar

[6]

V. Isakov, S. Nagayasu, G. Uhlmann and J. N. Wang, Increasing stability of the inverse boundary value problem for the Schrödinger equation,, in \emph{Inverse Problems and Applications}, (2014), 131.   Google Scholar

[7]

V. Isakov, Inverse Problems for Partial Differential Equations,, Springer-Verlag, (2006).   Google Scholar

[8]

V. Isakov, Inverse Source Problems,, AMS, (1990).  doi: 10.1090/surv/034.  Google Scholar

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95.  doi: 10.3934/ipi.2007.1.95.  Google Scholar

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Newmann map,, Discr. Cont. Dyn. Syst.-S, 4 (2011), 631.  doi: 10.3934/dcdss.2011.4.631.  Google Scholar

[11]

V. Isakov and J. N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map,, Inverse Problems and Imaging, 8 (2014), 1139.  doi: 10.3934/ipi.2014.8.1139.  Google Scholar

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.   Google Scholar

[13]

S. Nagayasu, G. Uhlmann and J. N. Wang, Increasing stability of the inverse boundary value problem for the acoustic equation,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/2/025012.  Google Scholar

[14]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem",, J. d' Anal. Math., 91 (2003), 247.  doi: 10.1007/BF02788790.  Google Scholar

[15]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.   Google Scholar

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1998), 153.   Google Scholar

[2]

L. D. Faddeev, Growing solutions of the Schrödinger equation,, Dokl. Akad. Nauk SSSR, 165 (1965), 514.   Google Scholar

[3]

P. Hähner, A periodic Faddeev-type solution operator,, J. Diff. Equat., 128 (1996), 300.  doi: 10.1006/jdeq.1996.0096.  Google Scholar

[4]

L. Hörmander, Linear Partial Differential Operators,, Springer-Verlag, (1976).   Google Scholar

[5]

M. Isaev and R. Novikov, Energy and regularity dependent stability estimates for the Gelfand's inverse problem in multi dimensions,, J. Inverse Ill-Posed Problems, 20 (2012), 313.  doi: 10.1155/2013/318154.  Google Scholar

[6]

V. Isakov, S. Nagayasu, G. Uhlmann and J. N. Wang, Increasing stability of the inverse boundary value problem for the Schrödinger equation,, in \emph{Inverse Problems and Applications}, (2014), 131.   Google Scholar

[7]

V. Isakov, Inverse Problems for Partial Differential Equations,, Springer-Verlag, (2006).   Google Scholar

[8]

V. Isakov, Inverse Source Problems,, AMS, (1990).  doi: 10.1090/surv/034.  Google Scholar

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95.  doi: 10.3934/ipi.2007.1.95.  Google Scholar

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Newmann map,, Discr. Cont. Dyn. Syst.-S, 4 (2011), 631.  doi: 10.3934/dcdss.2011.4.631.  Google Scholar

[11]

V. Isakov and J. N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map,, Inverse Problems and Imaging, 8 (2014), 1139.  doi: 10.3934/ipi.2014.8.1139.  Google Scholar

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.   Google Scholar

[13]

S. Nagayasu, G. Uhlmann and J. N. Wang, Increasing stability of the inverse boundary value problem for the acoustic equation,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/2/025012.  Google Scholar

[14]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem",, J. d' Anal. Math., 91 (2003), 247.  doi: 10.1007/BF02788790.  Google Scholar

[15]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.   Google Scholar

[1]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[2]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[3]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[4]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[5]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[6]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[7]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[8]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[9]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[10]

Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems & Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063

[11]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[12]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[13]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[14]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[15]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[16]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[17]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[18]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[19]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[20]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]