• Previous Article
    A study of the one dimensional total generalised variation regularisation problem
  • IPI Home
  • This Issue
  • Next Article
    Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data
May  2015, 9(2): 479-509. doi: 10.3934/ipi.2015.9.479

An improved fast local level set method for three-dimensional inverse gravimetry

1. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States, United States

2. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Received  February 2014 Revised  January 2015 Published  March 2015

We propose an improved fast local level set method for the inverse problem of gravimetry by developing two novel algorithms: one is of linear complexity designed for computing the Frechet derivative of the nonlinear domain inverse problem, and the other is designed for carrying out numerical continuation rapidly so as to obtain fictitious full measurement data from partial measurement. Since the Laplacian kernel is symmetric and translationally invariant, we design certain affine transformations to speed up the computational process in evaluating the Frechet derivative; since it decays rapidly away from diagonal, we carry out low-rank matrix approximation to reduce storage requirements. These properties are eventually translated into an algorithm of linear complexity and linear storage requirement for computing the derivative. Since the single layer density function, used in representing the potential, is smooth and periodic on an artificial hypersurface enclosing the target domain, the spectral expansion is allowed to approximate this density function, which eventually leads to rapid algorithms for carrying out the numerical continuation in both 2-D and 3-D cases. 2-D and 3-D numerical examples illustrate that this improved level-set method is capable of computing high-resolution inversions and handling 3-D large-scale inverse gravimetry problems.
Citation: Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems & Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479
References:
[1]

H. Bertete-Aguirre, E. Cherkaev and M. Oristaglio, Non-smooth gravity problem with total variation penalization functional,, Geophys. J. Int., 149 (2002), 499.  doi: 10.1046/j.1365-246X.2002.01664.x.  Google Scholar

[2]

M. Burger, A level set method for inverse problems,, Inverse Problems, 17 (2001), 1327.  doi: 10.1088/0266-5611/17/5/307.  Google Scholar

[3]

M. Burger and S. Osher, A survey on level set methods for inverse problems and optimal design,, European J. Appl. Math., 16 (2005), 263.  doi: 10.1017/S0956792505006182.  Google Scholar

[4]

T. Cecil, S. J. Osher and J. Qian, Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension,, J. Comput. Phys., 213 (2006), 458.  doi: 10.1016/j.jcp.2005.08.020.  Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd edition, (2013).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[6]

T. DeLillo, V. Isakov, N. Valdivia and L. Wang, The detection of surface vibrations from interior acoustical pressure,, Inverse Problems, 19 (2003), 507.  doi: 10.1088/0266-5611/19/3/302.  Google Scholar

[7]

O. Dorn and D. Lesselier, Level set methods for inverse scattering,, Inverse Problems, 22 (2006).  doi: 10.1088/0266-5611/22/4/R01.  Google Scholar

[8]

S. Hou, K. Solna and H.-K. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317.  doi: 10.1016/j.jcp.2004.02.010.  Google Scholar

[9]

V. Isakov, Inverse Source Problems,, American Mathematical Society, (1990).  doi: 10.1090/surv/034.  Google Scholar

[10]

V. Isakov, S. Leung and J. Qian, A fast local level set method for inverse gravimetry,, Comm. in Computational Physics, 10 (2011), 1044.  doi: 10.4208/cicp.100710.021210a.  Google Scholar

[11]

V. Isakov, S. Leung and J. Qian, A three-dimensional inverse gravimetry problem for ice with snow caps,, {Inverse Problems and Imaging}, 7 (2013), 523.  doi: 10.3934/ipi.2013.7.523.  Google Scholar

[12]

A. Litman, D. Lesselier and F. Santosa, Reconstruction of a 2-D binary obstacle by controlled evolution of a level-set,, Inverse Problems, 14 (1998), 685.  doi: 10.1088/0266-5611/14/3/018.  Google Scholar

[13]

W. Lu and Y. Y. Lu, Efficient boundary integral equation method for photonic crystal fibers,, Journal of Lightwave Technology, 30 (2012), 1610.  doi: 10.1109/JLT.2012.2189355.  Google Scholar

[14]

S. J. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[15]

J. Qian, L.-T. Cheng and S. J. Osher, A level set based Eulerian approach for anisotropic wave propagations,, Wave Motion, 37 (2003), 365.  doi: 10.1016/S0165-2125(02)00101-4.  Google Scholar

[16]

J. Qian and S. Leung, A level set method for paraxial multivalued traveltimes,, J. Comput. Phys., 197 (2004), 711.  doi: 10.1016/j.jcp.2003.12.017.  Google Scholar

[17]

J. Qian and S. Leung, A local level set method for paraxial multivalued geometric optics,, SIAM J. Sci. Comp., 28 (2006), 206.  doi: 10.1137/030601673.  Google Scholar

[18]

F. Santosa, A level-set approach for inverse problems involving obstacles,, Control, 1 (1996), 17.   Google Scholar

[19]

K. van den Doel, U. Ascher and A. Leitao, Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems,, J. Sci. Comput., 43 (2010), 44.  doi: 10.1007/s10915-009-9341-x.  Google Scholar

[20]

H.-K. Zhao, T. Chan, B. Merriman and S. J. Osher, A variational level set approach for multiphase motion,, J. Comput. Phys., 127 (1996), 179.  doi: 10.1006/jcph.1996.0167.  Google Scholar

show all references

References:
[1]

H. Bertete-Aguirre, E. Cherkaev and M. Oristaglio, Non-smooth gravity problem with total variation penalization functional,, Geophys. J. Int., 149 (2002), 499.  doi: 10.1046/j.1365-246X.2002.01664.x.  Google Scholar

[2]

M. Burger, A level set method for inverse problems,, Inverse Problems, 17 (2001), 1327.  doi: 10.1088/0266-5611/17/5/307.  Google Scholar

[3]

M. Burger and S. Osher, A survey on level set methods for inverse problems and optimal design,, European J. Appl. Math., 16 (2005), 263.  doi: 10.1017/S0956792505006182.  Google Scholar

[4]

T. Cecil, S. J. Osher and J. Qian, Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension,, J. Comput. Phys., 213 (2006), 458.  doi: 10.1016/j.jcp.2005.08.020.  Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd edition, (2013).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[6]

T. DeLillo, V. Isakov, N. Valdivia and L. Wang, The detection of surface vibrations from interior acoustical pressure,, Inverse Problems, 19 (2003), 507.  doi: 10.1088/0266-5611/19/3/302.  Google Scholar

[7]

O. Dorn and D. Lesselier, Level set methods for inverse scattering,, Inverse Problems, 22 (2006).  doi: 10.1088/0266-5611/22/4/R01.  Google Scholar

[8]

S. Hou, K. Solna and H.-K. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317.  doi: 10.1016/j.jcp.2004.02.010.  Google Scholar

[9]

V. Isakov, Inverse Source Problems,, American Mathematical Society, (1990).  doi: 10.1090/surv/034.  Google Scholar

[10]

V. Isakov, S. Leung and J. Qian, A fast local level set method for inverse gravimetry,, Comm. in Computational Physics, 10 (2011), 1044.  doi: 10.4208/cicp.100710.021210a.  Google Scholar

[11]

V. Isakov, S. Leung and J. Qian, A three-dimensional inverse gravimetry problem for ice with snow caps,, {Inverse Problems and Imaging}, 7 (2013), 523.  doi: 10.3934/ipi.2013.7.523.  Google Scholar

[12]

A. Litman, D. Lesselier and F. Santosa, Reconstruction of a 2-D binary obstacle by controlled evolution of a level-set,, Inverse Problems, 14 (1998), 685.  doi: 10.1088/0266-5611/14/3/018.  Google Scholar

[13]

W. Lu and Y. Y. Lu, Efficient boundary integral equation method for photonic crystal fibers,, Journal of Lightwave Technology, 30 (2012), 1610.  doi: 10.1109/JLT.2012.2189355.  Google Scholar

[14]

S. J. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[15]

J. Qian, L.-T. Cheng and S. J. Osher, A level set based Eulerian approach for anisotropic wave propagations,, Wave Motion, 37 (2003), 365.  doi: 10.1016/S0165-2125(02)00101-4.  Google Scholar

[16]

J. Qian and S. Leung, A level set method for paraxial multivalued traveltimes,, J. Comput. Phys., 197 (2004), 711.  doi: 10.1016/j.jcp.2003.12.017.  Google Scholar

[17]

J. Qian and S. Leung, A local level set method for paraxial multivalued geometric optics,, SIAM J. Sci. Comp., 28 (2006), 206.  doi: 10.1137/030601673.  Google Scholar

[18]

F. Santosa, A level-set approach for inverse problems involving obstacles,, Control, 1 (1996), 17.   Google Scholar

[19]

K. van den Doel, U. Ascher and A. Leitao, Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems,, J. Sci. Comput., 43 (2010), 44.  doi: 10.1007/s10915-009-9341-x.  Google Scholar

[20]

H.-K. Zhao, T. Chan, B. Merriman and S. J. Osher, A variational level set approach for multiphase motion,, J. Comput. Phys., 127 (1996), 179.  doi: 10.1006/jcph.1996.0167.  Google Scholar

[1]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[2]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[3]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[4]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[5]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[6]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[9]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[10]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[11]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[12]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[13]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[16]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[17]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[20]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]