-
Previous Article
Deformable multi-modal image registration by maximizing Rényi's statistical dependence measure
- IPI Home
- This Issue
-
Next Article
A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors
High-order total variation regularization approach for axially symmetric object tomography from a single radiograph
1. | Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong, China |
2. | Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Jiangsu Province, China |
3. | Institute of Applied Physics and Computational Mathematics, Beijing, China |
4. | Centre de Mathematiques et de Leurs Applications, CNRS, ENS de Cachan, PRES UniverSud, 61 av. du President Wilson, 94235 Cachan Cedex, France |
5. | Department of Mathematics, University of Bergen, P. O. Box 7800, N-5020, Bergen, Norway |
References:
[1] |
R. Abraham, M. Bergounioux and E. Trelat, A penalization approach for tomographic reconstruction of binary axially symmetric objects, Applied Mathematics and Optimization, 58 (2008), 345-371.
doi: 10.1007/s00245-008-9039-8. |
[2] |
T. J. Asaki, Quantitative Abel tomography robust to noisy, corrupted and missing data, Optimization and Engineering, 11 (2010), 381-393.
doi: 10.1007/s11081-009-9097-z. |
[3] |
T. J. Asaki, R. Chartrand, K. R. Vixie and B. Wohlberg, Abel inversion using total variation regularization, Inverse Problem, 21 (2005), 1895-1903.
doi: 10.1088/0266-5611/21/6/006. |
[4] |
T. Asaki, P. R. Campbell, R. Chartrand, C. E. Powell, K. R. Vixie and B. E. Wohlberg, Abel inversion using total variation regularization: Applications, Inverse Problem in Science and Engineering, 14 (2006), 873-885.
doi: 10.1080/17415970600882549. |
[5] |
R. H. T. Bates, K. L. Garden and T. M. Peters, Overview of computerized tomography with emphasis on future developments, Proc. IEEE, 71 (1983), 356-372.
doi: 10.1109/PROC.1983.12594. |
[6] |
M. Benning, C. Brune, M. Burger and J. Mueller, High-order TV methods - Enhancement via Bregman iteration, J. Sci. Comp., 54 (2013), 269-310.
doi: 10.1007/s10915-012-9650-3. |
[7] |
K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM Journal on Image Sciences, 3 (2010), 492-526.
doi: 10.1137/090769521. |
[8] |
K. Bredies and T. Valkonen, Inverse Problems with Second-order Total Generalized Variation Constraints, Proceedings of SampTA 2011 - 9th International Conference on Sampling Theory and Applications, Singapore, 2011. http://sampta2011.ntu.edu.sg/SampTA2011Proceedings/papers/Tu2S03.1-P0182.pdf |
[9] |
K. Bredies, K. Kunisch and T. Valkonen, Properties of L1-TGV2: The One-Dimensional Case, SFB-Report 2011-006, Karl-Franzens University of Graz, 2011. http://math.uni-graz.at/mobis/publications/SFB-Report-2011-006.pdf |
[10] |
A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011321.19549.88. |
[11] |
T. F. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.
doi: 10.1137/S1064827598344169. |
[12] |
T. Chen and H. R. Wu, Space variant median filters for the restoration of impulse noise corrupted images, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 48 (2001), 784-789. |
[13] |
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. and Simul., 4 (2005), 1168-1200.
doi: 10.1137/050626090. |
[14] |
D. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, 41 (1995), 613-627.
doi: 10.1109/18.382009. |
[15] |
I. Ekeland and R. Témam, Convex Analysis and Variational Problems,, 1999., ().
|
[16] |
H. L. Eng and K. K. Ma, Noise adaptive soft-switching median filter, IEEE Trans. Image Process., 10 (2001), 242-251. |
[17] |
R. Glowinski and A. Marrocco, Sur l'approximation, Rev. Francćaise Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9 (1975), 41-76. |
[18] |
T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891. |
[19] |
K. M. Hanson, A Bayesian Approach to Nonlinear Inversion: Abel Inversion from X-ray Attenuation Data, Maximum Entropy and Bayesian Methods in Applied Statistics, edited by J. H. Justice, Cambridge University Press, Cambridge, England, 1986. |
[20] |
J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer-Verlag Berlin, 1993.
doi: 10.1007/978-3-662-02796-7. |
[21] |
H. Hwang and R. A. Haddad, Adaptive median filters: New algorithms and results, IEEE Trans. Image Process., 4 (1995), 499-502.
doi: 10.1109/83.370679. |
[22] |
F. Knoll, K. Bredies, T. Pock and R. Stollberger, Second order total generalized variation (TGV) for MRI, Magnetic Resonance in Medicine, 65 (2011), 480-491.
doi: 10.1002/mrm.22595. |
[23] |
S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating directions method for convex optimizations, Mathematical Programming, 83 (1998), 29-53.
doi: 10.1007/BF02680549. |
[24] |
M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590.
doi: 10.1109/TIP.2003.819229. |
[25] |
M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, International Journal of Computer Vision, 66 (2006), 5-18.
doi: 10.1007/s11263-005-3219-7. |
[26] |
M. Nikolova, Local strong homogeneity of a regularized estimator, SIAM J. Appl. Math., 61 (2000), 633-658.
doi: 10.1137/S0036139997327794. |
[27] |
P. E. Ng and K. K. Ma, A switching median filter with boundary discriminative noise detection for extremely corrupted images, IEEE Trans. Image Process., 15 (2006), 1506-1516. |
[28] |
R. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal of Control and Optimization, 14 (1976), 877-898.
doi: 10.1137/0314056. |
[29] |
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D., 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[30] |
A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems, New York: Wiley, 1977. |
[31] |
C. L. Wu and X. C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Science, 3 (2010), 300-339.
doi: 10.1137/090767558. |
[32] |
C. L. Wu, J. Y. Zhang and X. C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging, 5 (2010), 237-261.
doi: 10.3934/ipi.2011.5.237. |
[33] |
X. C. Tai and C. L. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings. Lecture Notes in Computer Science, Springer, 5567 (2009), 502-513. |
show all references
References:
[1] |
R. Abraham, M. Bergounioux and E. Trelat, A penalization approach for tomographic reconstruction of binary axially symmetric objects, Applied Mathematics and Optimization, 58 (2008), 345-371.
doi: 10.1007/s00245-008-9039-8. |
[2] |
T. J. Asaki, Quantitative Abel tomography robust to noisy, corrupted and missing data, Optimization and Engineering, 11 (2010), 381-393.
doi: 10.1007/s11081-009-9097-z. |
[3] |
T. J. Asaki, R. Chartrand, K. R. Vixie and B. Wohlberg, Abel inversion using total variation regularization, Inverse Problem, 21 (2005), 1895-1903.
doi: 10.1088/0266-5611/21/6/006. |
[4] |
T. Asaki, P. R. Campbell, R. Chartrand, C. E. Powell, K. R. Vixie and B. E. Wohlberg, Abel inversion using total variation regularization: Applications, Inverse Problem in Science and Engineering, 14 (2006), 873-885.
doi: 10.1080/17415970600882549. |
[5] |
R. H. T. Bates, K. L. Garden and T. M. Peters, Overview of computerized tomography with emphasis on future developments, Proc. IEEE, 71 (1983), 356-372.
doi: 10.1109/PROC.1983.12594. |
[6] |
M. Benning, C. Brune, M. Burger and J. Mueller, High-order TV methods - Enhancement via Bregman iteration, J. Sci. Comp., 54 (2013), 269-310.
doi: 10.1007/s10915-012-9650-3. |
[7] |
K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM Journal on Image Sciences, 3 (2010), 492-526.
doi: 10.1137/090769521. |
[8] |
K. Bredies and T. Valkonen, Inverse Problems with Second-order Total Generalized Variation Constraints, Proceedings of SampTA 2011 - 9th International Conference on Sampling Theory and Applications, Singapore, 2011. http://sampta2011.ntu.edu.sg/SampTA2011Proceedings/papers/Tu2S03.1-P0182.pdf |
[9] |
K. Bredies, K. Kunisch and T. Valkonen, Properties of L1-TGV2: The One-Dimensional Case, SFB-Report 2011-006, Karl-Franzens University of Graz, 2011. http://math.uni-graz.at/mobis/publications/SFB-Report-2011-006.pdf |
[10] |
A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011321.19549.88. |
[11] |
T. F. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.
doi: 10.1137/S1064827598344169. |
[12] |
T. Chen and H. R. Wu, Space variant median filters for the restoration of impulse noise corrupted images, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 48 (2001), 784-789. |
[13] |
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. and Simul., 4 (2005), 1168-1200.
doi: 10.1137/050626090. |
[14] |
D. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, 41 (1995), 613-627.
doi: 10.1109/18.382009. |
[15] |
I. Ekeland and R. Témam, Convex Analysis and Variational Problems,, 1999., ().
|
[16] |
H. L. Eng and K. K. Ma, Noise adaptive soft-switching median filter, IEEE Trans. Image Process., 10 (2001), 242-251. |
[17] |
R. Glowinski and A. Marrocco, Sur l'approximation, Rev. Francćaise Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9 (1975), 41-76. |
[18] |
T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891. |
[19] |
K. M. Hanson, A Bayesian Approach to Nonlinear Inversion: Abel Inversion from X-ray Attenuation Data, Maximum Entropy and Bayesian Methods in Applied Statistics, edited by J. H. Justice, Cambridge University Press, Cambridge, England, 1986. |
[20] |
J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer-Verlag Berlin, 1993.
doi: 10.1007/978-3-662-02796-7. |
[21] |
H. Hwang and R. A. Haddad, Adaptive median filters: New algorithms and results, IEEE Trans. Image Process., 4 (1995), 499-502.
doi: 10.1109/83.370679. |
[22] |
F. Knoll, K. Bredies, T. Pock and R. Stollberger, Second order total generalized variation (TGV) for MRI, Magnetic Resonance in Medicine, 65 (2011), 480-491.
doi: 10.1002/mrm.22595. |
[23] |
S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating directions method for convex optimizations, Mathematical Programming, 83 (1998), 29-53.
doi: 10.1007/BF02680549. |
[24] |
M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590.
doi: 10.1109/TIP.2003.819229. |
[25] |
M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, International Journal of Computer Vision, 66 (2006), 5-18.
doi: 10.1007/s11263-005-3219-7. |
[26] |
M. Nikolova, Local strong homogeneity of a regularized estimator, SIAM J. Appl. Math., 61 (2000), 633-658.
doi: 10.1137/S0036139997327794. |
[27] |
P. E. Ng and K. K. Ma, A switching median filter with boundary discriminative noise detection for extremely corrupted images, IEEE Trans. Image Process., 15 (2006), 1506-1516. |
[28] |
R. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal of Control and Optimization, 14 (1976), 877-898.
doi: 10.1137/0314056. |
[29] |
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D., 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[30] |
A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems, New York: Wiley, 1977. |
[31] |
C. L. Wu and X. C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Science, 3 (2010), 300-339.
doi: 10.1137/090767558. |
[32] |
C. L. Wu, J. Y. Zhang and X. C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging, 5 (2010), 237-261.
doi: 10.3934/ipi.2011.5.237. |
[33] |
X. C. Tai and C. L. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings. Lecture Notes in Computer Science, Springer, 5567 (2009), 502-513. |
[1] |
Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems and Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237 |
[2] |
Anis Theljani, Ke Chen. An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration. Inverse Problems and Imaging, 2019, 13 (2) : 309-335. doi: 10.3934/ipi.2019016 |
[3] |
Linghai Kong, Suhua Wei. A variational method for Abel inversion tomography with mixed Poisson-Laplace-Gaussian noise. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022007 |
[4] |
Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068 |
[5] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[6] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5495-5508. doi: 10.3934/dcdsb.2020355 |
[7] |
Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems and Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421 |
[8] |
Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2267-2281. doi: 10.3934/jimo.2019053 |
[9] |
Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 1-9. doi: 10.3934/jimo.2018136 |
[10] |
Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409 |
[11] |
Fatemeh Bazikar, Saeed Ketabchi, Hossein Moosaei. Smooth augmented Lagrangian method for twin bounded support vector machine. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021027 |
[12] |
Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549 |
[13] |
Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064 |
[14] |
Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems and Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507 |
[15] |
Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems and Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167 |
[16] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[17] |
Xi-Hong Yan. A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 45-54. doi: 10.3934/naco.2016.6.45 |
[18] |
Wei Zhu. A numerical study of a mean curvature denoising model using a novel augmented Lagrangian method. Inverse Problems and Imaging, 2017, 11 (6) : 975-996. doi: 10.3934/ipi.2017045 |
[19] |
Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319 |
[20] |
Qingsong Duan, Mengwei Xu, Yue Lu, Liwei Zhang. A smoothing augmented Lagrangian method for nonconvex, nonsmooth constrained programs and its applications to bilevel problems. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1241-1261. doi: 10.3934/jimo.2018094 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]