-
Previous Article
Determining an obstacle by far-field data measured at a few spots
- IPI Home
- This Issue
-
Next Article
A fast edge detection algorithm using binary labels
Modulated luminescence tomography
1. | Department of Mathematics, Purdue University, 150 N University Street, West Lafayette, IN 47907 |
2. | Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States, United States |
References:
[1] |
W. Cong, Z. Pan, R. Eilkins, A. Srivastava, N. Ishaque, P. Stefanov and G. Wang, X-ray micromodulated luminescence tomography in dual-cone geometry,, J. of Biomed. Optics, 19 (2014).
doi: 10.1117/1.JBO.19.7.076002. |
[2] |
W. Cong, F. Liu, C. Wang and G. Wang, X-ray micro-modulated luminescence tomography (XMLT),, Opt. Express, 22 (2014), 5572.
doi: 10.1364/OE.22.005572. |
[3] |
L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).
|
[4] |
B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights,, J. Geom. Anal., 18 (2008), 89.
doi: 10.1007/s12220-007-9007-6. |
[5] |
R. A. Kruger, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography-technical considerations,, Med. Phys., 26 (1999), 1832.
doi: 10.1118/1.598688. |
[6] |
P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.
doi: 10.1017/S0956792508007353. |
[7] |
F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie and Z. Pan, Photostimulated near-infrared persistent luminescence as a new optical read-out from $Cr^{3+}$-doped $LiGa_5O_8$,, Sci. Rep., 3 (2013). Google Scholar |
[8] |
V. Ntziachristos, Going deeper than microscopy: The optical imaging frontier in biology,, Nat. Methods, 7 (2010), 603.
doi: 10.1038/nmeth.1483. |
[9] |
V. Ntziachristos, J. Ripoll, L. V. Wang and R. Weissleder, Looking and listening to light: The evolution of whole-body photonic imaging,, Nat. Biotechnol., 23 (2005), 313.
doi: 10.1038/nbt1074. |
[10] |
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares,, ACM Trans. Math. Softw., 8 (1982), 43.
doi: 10.1145/355984.355989. |
[11] |
G. Pratx, C. M. Carpenter, C. Sun and L. Xing, X-ray luminescence computed tomography via selective excitation: A feasibility study,, IEEE Transactions on Medical Imaging, 29 (2010), 1992.
doi: 10.1109/TMI.2010.2055883. |
[12] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. III,, Scattering Theory, (1979).
|
[13] |
M. Schweiger, S. R. Arridge, M. Hiraoka and D. T. Delpy, The finite element method for the propagation of light in scattering media: Boundary and source conditions,, Med. Phys., 22 (1995), 1779.
doi: 10.1118/1.597634. |
[14] |
P. Stefanov and G. Uhlmann, Linearizing non-linear inverse problems and an application to inverse backscattering,, J. Funct. Anal., 256 (2009), 2842.
doi: 10.1016/j.jfa.2008.10.017. |
[15] |
________, Thermoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/7/075011. |
[16] |
G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan and M. Henry, In vivo mouse studies with bioluminescence tomography,, Opt. Express, 14 (2006), 7801.
doi: 10.1364/OE.14.007801. |
[17] |
L. V. Wang and S. Hu, Photoacoustic tomography: In vivo imaging from organelles to organs,, Science, 335 (2012), 1458.
doi: 10.1126/science.1216210. |
[18] |
A. J. Welch and M. J. C. van Gemert, eds., Optical-thermal Response of Laser-Irradiated Tissue,, Springer, (2011).
doi: 10.1007/978-90-481-8831-4. |
show all references
References:
[1] |
W. Cong, Z. Pan, R. Eilkins, A. Srivastava, N. Ishaque, P. Stefanov and G. Wang, X-ray micromodulated luminescence tomography in dual-cone geometry,, J. of Biomed. Optics, 19 (2014).
doi: 10.1117/1.JBO.19.7.076002. |
[2] |
W. Cong, F. Liu, C. Wang and G. Wang, X-ray micro-modulated luminescence tomography (XMLT),, Opt. Express, 22 (2014), 5572.
doi: 10.1364/OE.22.005572. |
[3] |
L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).
|
[4] |
B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights,, J. Geom. Anal., 18 (2008), 89.
doi: 10.1007/s12220-007-9007-6. |
[5] |
R. A. Kruger, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography-technical considerations,, Med. Phys., 26 (1999), 1832.
doi: 10.1118/1.598688. |
[6] |
P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.
doi: 10.1017/S0956792508007353. |
[7] |
F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie and Z. Pan, Photostimulated near-infrared persistent luminescence as a new optical read-out from $Cr^{3+}$-doped $LiGa_5O_8$,, Sci. Rep., 3 (2013). Google Scholar |
[8] |
V. Ntziachristos, Going deeper than microscopy: The optical imaging frontier in biology,, Nat. Methods, 7 (2010), 603.
doi: 10.1038/nmeth.1483. |
[9] |
V. Ntziachristos, J. Ripoll, L. V. Wang and R. Weissleder, Looking and listening to light: The evolution of whole-body photonic imaging,, Nat. Biotechnol., 23 (2005), 313.
doi: 10.1038/nbt1074. |
[10] |
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares,, ACM Trans. Math. Softw., 8 (1982), 43.
doi: 10.1145/355984.355989. |
[11] |
G. Pratx, C. M. Carpenter, C. Sun and L. Xing, X-ray luminescence computed tomography via selective excitation: A feasibility study,, IEEE Transactions on Medical Imaging, 29 (2010), 1992.
doi: 10.1109/TMI.2010.2055883. |
[12] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. III,, Scattering Theory, (1979).
|
[13] |
M. Schweiger, S. R. Arridge, M. Hiraoka and D. T. Delpy, The finite element method for the propagation of light in scattering media: Boundary and source conditions,, Med. Phys., 22 (1995), 1779.
doi: 10.1118/1.597634. |
[14] |
P. Stefanov and G. Uhlmann, Linearizing non-linear inverse problems and an application to inverse backscattering,, J. Funct. Anal., 256 (2009), 2842.
doi: 10.1016/j.jfa.2008.10.017. |
[15] |
________, Thermoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/7/075011. |
[16] |
G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan and M. Henry, In vivo mouse studies with bioluminescence tomography,, Opt. Express, 14 (2006), 7801.
doi: 10.1364/OE.14.007801. |
[17] |
L. V. Wang and S. Hu, Photoacoustic tomography: In vivo imaging from organelles to organs,, Science, 335 (2012), 1458.
doi: 10.1126/science.1216210. |
[18] |
A. J. Welch and M. J. C. van Gemert, eds., Optical-thermal Response of Laser-Irradiated Tissue,, Springer, (2011).
doi: 10.1007/978-90-481-8831-4. |
[1] |
Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1 |
[2] |
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013 |
[3] |
Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems & Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665 |
[4] |
Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659 |
[5] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems & Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056 |
[6] |
Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767 |
[7] |
Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749 |
[8] |
Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979 |
[9] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019124 |
[10] |
Fanwen Meng, Kiok Liang Teow, Kelvin Wee Sheng Teo, Chee Kheong Ooi, Seow Yian Tay. Predicting 72-hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records. Journal of Industrial & Management Optimization, 2019, 15 (2) : 947-962. doi: 10.3934/jimo.2018079 |
[11] |
Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077 |
[12] |
Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847 |
[13] |
Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325 |
[14] |
Dana Paquin, Doron Levy, Lei Xing. Multiscale deformable registration of noisy medical images. Mathematical Biosciences & Engineering, 2008, 5 (1) : 125-144. doi: 10.3934/mbe.2008.5.125 |
[15] |
Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems & Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013 |
[16] |
Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052 |
[17] |
Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173 |
[18] |
Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. Networks & Heterogeneous Media, 2018, 13 (1) : 119-153. doi: 10.3934/nhm.2018006 |
[19] |
Xiangmin Zhang. User perceived learning from interactive searching on big medical literature data. Big Data & Information Analytics, 2017, 2 (5) : 1-16. doi: 10.3934/bdia.2017019 |
[20] |
Jing Ge, Zhigui Lin, Huaiping Zhu. Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1469-1481. doi: 10.3934/dcdsb.2016007 |
2018 Impact Factor: 1.469
Tools
Metrics
Other articles
by authors
[Back to Top]