-
Previous Article
Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph
- IPI Home
- This Issue
- Next Article
Identifying defects in an unknown background using differential measurements
1. | EDF R&D, Departement STEP, 6 quai Watier, 78401, Chatou CEDEX, France, France |
2. | INRIA Saclay Ile de France/Ecole Polytechnique, CMAP, Route de Saclay, 91128 Palaiseau Cedex, France |
References:
[1] |
L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp.
doi: 10.1088/0266-5611/30/3/035011. |
[2] |
G. Bal, L. Carin, D. Liu and K. Ren, Experimental validation of a transport-based imaging method in highly scattering environments, Inverse Problems, 23 (2007), 2527-2539.
doi: 10.1088/0266-5611/23/6/015. |
[3] |
L. Borcea, F. González del Cueto, G. Papanicolaou and C. Tsogka, Filtering deterministic layer effects in imaging, SIAM Rev., 54 (2012), 757-798.
doi: 10.1137/120880975. |
[4] |
L. Borcea, J. Garnier, G. Papanicolaou and C. Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems, 27 (2011), 085004, 33pp.
doi: 10.1088/0266-5611/27/8/085004. |
[5] |
H. Brezis, Functional Analysis, SObolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. |
[6] |
F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. An Introduction, Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006. |
[7] |
F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inverse Problems, 22 (2006), 845-867.
doi: 10.1088/0266-5611/22/3/007. |
[8] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Applied Mathematical Sciences, 93, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4942-3. |
[9] |
J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Stochastic Modelling and Applied Probability, 56, Springer, New York, 2007.
doi: 10.1007/978-0-387-49808-9_4. |
[10] |
Y. Grisel, V. Mouysset, P.-A. Mazet and J.-P. Raymond, Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements, Inverse Problems, 28 (2012), 055003, 19pp.
doi: 10.1088/0266-5611/28/5/055003. |
[11] |
H. Haddar, Sampling 2d, 2013,, , ().
|
[12] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and its Applications, 36, Oxford University Press, Oxford, 2008. |
[13] |
A. I. Nachman, L. Päivärinta and A. Teirilä, On imaging obstacles inside inhomogeneous media, J. Funct. Anal., 252 (2007), 490-516.
doi: 10.1016/j.jfa.2007.06.020. |
[14] |
B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM J. Math. Anal., 22 (1991), 1755-1762.
doi: 10.1137/0522109. |
[15] |
J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.
doi: 10.1137/110836420. |
show all references
References:
[1] |
L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp.
doi: 10.1088/0266-5611/30/3/035011. |
[2] |
G. Bal, L. Carin, D. Liu and K. Ren, Experimental validation of a transport-based imaging method in highly scattering environments, Inverse Problems, 23 (2007), 2527-2539.
doi: 10.1088/0266-5611/23/6/015. |
[3] |
L. Borcea, F. González del Cueto, G. Papanicolaou and C. Tsogka, Filtering deterministic layer effects in imaging, SIAM Rev., 54 (2012), 757-798.
doi: 10.1137/120880975. |
[4] |
L. Borcea, J. Garnier, G. Papanicolaou and C. Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems, 27 (2011), 085004, 33pp.
doi: 10.1088/0266-5611/27/8/085004. |
[5] |
H. Brezis, Functional Analysis, SObolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. |
[6] |
F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. An Introduction, Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006. |
[7] |
F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inverse Problems, 22 (2006), 845-867.
doi: 10.1088/0266-5611/22/3/007. |
[8] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Applied Mathematical Sciences, 93, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4942-3. |
[9] |
J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Stochastic Modelling and Applied Probability, 56, Springer, New York, 2007.
doi: 10.1007/978-0-387-49808-9_4. |
[10] |
Y. Grisel, V. Mouysset, P.-A. Mazet and J.-P. Raymond, Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements, Inverse Problems, 28 (2012), 055003, 19pp.
doi: 10.1088/0266-5611/28/5/055003. |
[11] |
H. Haddar, Sampling 2d, 2013,, , ().
|
[12] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and its Applications, 36, Oxford University Press, Oxford, 2008. |
[13] |
A. I. Nachman, L. Päivärinta and A. Teirilä, On imaging obstacles inside inhomogeneous media, J. Funct. Anal., 252 (2007), 490-516.
doi: 10.1016/j.jfa.2007.06.020. |
[14] |
B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM J. Math. Anal., 22 (1991), 1755-1762.
doi: 10.1137/0522109. |
[15] |
J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.
doi: 10.1137/110836420. |
[1] |
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033 |
[2] |
Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036 |
[3] |
Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263 |
[4] |
Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681 |
[5] |
Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757 |
[6] |
Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577 |
[9] |
Lorenzo Audibert. The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary. Inverse Problems and Imaging, 2017, 11 (6) : 1107-1119. doi: 10.3934/ipi.2017051 |
[10] |
Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022050 |
[11] |
Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022009 |
[12] |
Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025 |
[13] |
Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems and Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103 |
[14] |
Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026 |
[15] |
Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems and Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749 |
[16] |
Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355 |
[17] |
Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 |
[18] |
Houssem Haddar, Alexander Konschin. Factorization method for imaging a local perturbation in inhomogeneous periodic layers from far field measurements. Inverse Problems and Imaging, 2020, 14 (1) : 133-152. doi: 10.3934/ipi.2019067 |
[19] |
Alexey Penenko. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements. Inverse Problems and Imaging, 2020, 14 (5) : 757-782. doi: 10.3934/ipi.2020035 |
[20] |
Laurent Bourgeois, Arnaud Recoquillay. The Linear Sampling Method for Kirchhoff-Love infinite plates. Inverse Problems and Imaging, 2020, 14 (2) : 363-384. doi: 10.3934/ipi.2020016 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]