Advanced Search
Article Contents
Article Contents

Identifying defects in an unknown background using differential measurements

Abstract Related Papers Cited by
  • We present a new qualitative imaging method capable of selecting defects in complex and unknown background from differential measurements of farfield operators: i.e. far measurements of scattered waves in the cases with and without defects. Indeed, the main difficulty is that the background physical properties are unknown. Our approach is based on a new exact characterization of a scatterer domain in terms of the far field operator range and the link with solutions to so-called interior transmission problems. We present the theoretical foundations of the method and some validating numerical experiments in a two dimensional setting.
    Mathematics Subject Classification: 35R60, 35R30, 65M32.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp.doi: 10.1088/0266-5611/30/3/035011.


    G. Bal, L. Carin, D. Liu and K. Ren, Experimental validation of a transport-based imaging method in highly scattering environments, Inverse Problems, 23 (2007), 2527-2539.doi: 10.1088/0266-5611/23/6/015.


    L. Borcea, F. González del Cueto, G. Papanicolaou and C. Tsogka, Filtering deterministic layer effects in imaging, SIAM Rev., 54 (2012), 757-798.doi: 10.1137/120880975.


    L. Borcea, J. Garnier, G. Papanicolaou and C. Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems, 27 (2011), 085004, 33pp.doi: 10.1088/0266-5611/27/8/085004.


    H. Brezis, Functional Analysis, SObolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.


    F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. An Introduction, Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.


    F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inverse Problems, 22 (2006), 845-867.doi: 10.1088/0266-5611/22/3/007.


    D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Applied Mathematical Sciences, 93, Springer, New York, 2013.doi: 10.1007/978-1-4614-4942-3.


    J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Stochastic Modelling and Applied Probability, 56, Springer, New York, 2007.doi: 10.1007/978-0-387-49808-9_4.


    Y. Grisel, V. Mouysset, P.-A. Mazet and J.-P. Raymond, Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements, Inverse Problems, 28 (2012), 055003, 19pp.doi: 10.1088/0266-5611/28/5/055003.


    H. Haddar, Sampling 2d, 2013, http://sourceforge.net/projects/samplings-2d/.


    A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and its Applications, 36, Oxford University Press, Oxford, 2008.


    A. I. Nachman, L. Päivärinta and A. Teirilä, On imaging obstacles inside inhomogeneous media, J. Funct. Anal., 252 (2007), 490-516.doi: 10.1016/j.jfa.2007.06.020.


    B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM J. Math. Anal., 22 (1991), 1755-1762.doi: 10.1137/0522109.


    J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.doi: 10.1137/110836420.

  • 加载中

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint