• Previous Article
    Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials
  • IPI Home
  • This Issue
  • Next Article
    Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph
August  2015, 9(3): 661-707. doi: 10.3934/ipi.2015.9.661

Periodic spline-based frames for image restoration

1. 

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, Israel

2. 

Dept. of Mathematical Information Technology, Faculty of Information Technology, Agora, P.O. Box 35, FI-40014, University of Jyväskylä

Received  November 2011 Revised  July 2014 Published  July 2015

We present a design scheme that generates tight and semi-tight frames in discrete-time periodic signals space originated from four-channel perfect reconstruction periodic filter banks. Filter banks are derived from interpolating and quasi-interpolating polynomial and discrete splines. Each filter bank comprises one linear phase low-pass filter (in most cases interpolating) and one high-pass filter, whose magnitude's response mirrors that of a low-pass filter. These filter banks comprise two band-pass filters. We introduce local discrete vanishing moments (LDVM). When the frame is tight, analysis framelets coincide with their synthesis counterparts. However, for semi-tight frames, we swap LDVM between synthesis and analysis framelets. The design scheme is generic and it enables us to design framelets with any number of LDVM. The computational complexity of the the framelet transforms, which consists of calculating the forward and the inverse FFTs, does not depend on the number of LDVM and does depend on the size of the the impulse response fi lters. The designed frames are used for image restoration tasks, which were degraded by blurring, random noise and missing pixels. The images were restored by the application of the Split Bregman Iterations method. The frames performances are evaluated. A potential application of this methodology is the design of a snapshot hyperspectral imager that is based on a regular digital camera. All these imaging applications are described.
Citation: Amir Averbuch, Pekka Neittaanmäki, Valery Zheludev. Periodic spline-based frames for image restoration. Inverse Problems & Imaging, 2015, 9 (3) : 661-707. doi: 10.3934/ipi.2015.9.661
References:
[1]

O. Amrani, A. Averbuch, T. Cohen and V. A. Zheludev, Symmetric interpolatory framelets and their error correction properties,, International Journal of Wavelets, 5 (2007), 541.  doi: 10.1142/S0219691307001896.  Google Scholar

[2]

A. Averbuch and V. Zheludev, Construction of biorthogonal discrete wavelet transforms using interpolatory splines,, Applied and Comp. Harmonic Analysis, 12 (2002), 25.  doi: 10.1006/acha.2001.0367.  Google Scholar

[3]

A. Averbuch and V. Zheludev, Wavelet transforms generated by splines,, International Journal of Wavelets, 5 (2007), 257.  doi: 10.1142/S0219691307001756.  Google Scholar

[4]

A. Z. Averbuch, A. B. Pevnyi and V. A. Zheludev, Biorthogonal Butterworth wavelets derived from discrete interpolatory splines,, IEEE Trans. on Sign. Proc., 49 (2001), 2682.  doi: 10.1109/78.960415.  Google Scholar

[5]

A. Z. Averbuch, A. B. Pevnyi and V. A. Zheludev, Butterworth wavelet transforms derived from discrete interpolatory splines: Recursive implementation,, Signal Processing, 81 (2001), 2363.   Google Scholar

[6]

A. Z. Averbuch, V. A. Zheludev and T. Cohen, Interpolatory frames in signal space,, IEEE Trans. Sign. Proc., 54 (2006), 2126.  doi: 10.1109/TSP.2006.870562.  Google Scholar

[7]

A. Z. Averbuch, V. A. Zheludev and T. Cohen, Tight and sibling frames originated from discrete splines,, Sign. Proc. J., 86 (2006), 1632.  doi: 10.1016/j.sigpro.2005.09.007.  Google Scholar

[8]

H. Bölcskei, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks,, IEEE Transactions on Sign. Proc., 46 (1998), 3256.   Google Scholar

[9]

C. K. Chui and W. He, Compactly supported tight frames associated with refinable functions,, Applied and Comp. Harmonic Analysis, 8 (2000), 293.  doi: 10.1006/acha.2000.0301.  Google Scholar

[10]

C. K. Chui, W. He and J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments,, Applied and Comp. Harmonic Analysis, 13 (2002), 224.  doi: 10.1016/S1063-5203(02)00510-9.  Google Scholar

[11]

Z. Cvetković and M. Vetterli, Oversampled filter banks,, IEEE Transactions on Signal Processing, 46 (1998), 1245.   Google Scholar

[12]

I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: Mra-based constructions of wavelet frames,, Applied and Computational Harmonic Analysis, 14 (2003), 1.  doi: 10.1016/S1063-5203(02)00511-0.  Google Scholar

[13]

B. Dong and Z. Shen, Pseudo-splines, wavelets and framelets,, Applied and Computational Harmonic Analysis, 22 (2007), 78.  doi: 10.1016/j.acha.2006.04.008.  Google Scholar

[14]

D. H. Foster, K. Amano, S. M. C. Nascimento and M. J. Foster, Frequency of metamerism in natural scenes,, Journal of the Optical Society of America A, 23 (2006), 2359.   Google Scholar

[15]

T. Goldstein and S. Osher, The split {Bregman} method for l1-regularized problems,, SIAM J. Imaging Sciences, 2 (2009), 323.  doi: 10.1137/080725891.  Google Scholar

[16]

M. Golub, M. Nathan, A. Averbuch, A. Kagan, V. A. Zheludev and R. Malinsky, Snapshot spectral imaging based on digital cameras,, US Patent Application Publication Golub et al., (2013).   Google Scholar

[17]

V. K. Goyal, J. Kovacevic and J. A. Kelner, Quantized frame expansions with erasures,, Appl. and Comput. Harmonic Analysis, 10 (2001), 203.  doi: 10.1006/acha.2000.0340.  Google Scholar

[18]

V. K. Goyal, M. Vetterli and N. T. Thao, Quantized overcomplete expansions in $\mathbbR^n$: Analysis, synthesis and algorithms,, IEEE Trans. on Information Theory, 44 (1998), 16.  doi: 10.1109/18.650985.  Google Scholar

[19]

B. Han, S. Song Goh and Z. Shen, Tight periodic wavelet frames and approximation orders,, Applied and Computational Harmonic Analysis, 31 (2011), 228.  doi: 10.1016/j.acha.2010.12.001.  Google Scholar

[20]

C. Herley and M. Vetterli, Wavelets and recursive filter banks,, IEEE Trans. Signal Proc., 41 (1993), 2536.  doi: 10.1109/78.229887.  Google Scholar

[21]

J. Kovacevic, P. L. Dragotti and V. K. Goyal, Filter bank frame expansions with erasures,, IEEE Trans. Inform, 48 (2002), 1439.  doi: 10.1109/TIT.2002.1003832.  Google Scholar

[22]

A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing,, New York, (2010).   Google Scholar

[23]

S. Osher, J. Cai, B. Dong and Z. Shen, Image restoration: Total variation, wavelet frames, and beyond,, Journal of the American Mathematical Society, 25 (2012), 1033.  doi: 10.1090/S0894-0347-2012-00740-1.  Google Scholar

[24]

G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. II,, Springer, (1971).   Google Scholar

[25]

J. Romberg, E. Candes and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,, Communications on Pure and Applied Mathematics, 59 (2006), 1207.  doi: 10.1002/cpa.20124.  Google Scholar

[26]

A. Ron and Z. Shen, Compactly supported tight affine spline frames in$ l^2(\mathbbR)$,, Mathematics of Computation, 67 (1998), 191.  doi: 10.1090/S0025-5718-98-00898-9.  Google Scholar

[27]

I. J. Schoenberg, Contribution to the problem of approximation of equidistant data by analytic functions,, Quart. Appl. Math., 4 (1946), 45.   Google Scholar

[28]

Z. Shen, Wavelet frames and image restorations,, in Proc. Int. Congress of Mathematicians. Vol. IV (eds. Rajendra Bhatia), (2010), 2834.   Google Scholar

[29]

Z. Shen, J. Cai and S. Osher, Split Bregman methods and frame based image restoration,, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 8 (2009), 337.  doi: 10.1137/090753504.  Google Scholar

[30]

Z. Shen H. Ji and Y. Xu, Wavelet frame based image restoration with missing/damaged pixels,, East Asia Journal on Applied Mathematics, 1 (2011), 108.   Google Scholar

[31]

G. Strang and G. Fix, A Fourier analysis of the finite element variational method,, Construct. Asp. Funct. Anal., 57 (2011), 793.  doi: 10.1007/978-3-642-10984-3_7.  Google Scholar

[32]

V. A. Zheludev, V. N. Malozemov and A. B. Pevnyi, Filter banks and frames in the discrete periodic case,, in Proceedings of the St. Petersburg Mathematical Society. Vol. XIV, (2009), 1.   Google Scholar

[33]

V. A. Zheludev, Local spline approximation on a uniform grid,, Zh. Vychisl. Mat. i Mat. Fiz., 27 (1987), 1296.   Google Scholar

[34]

V. A. Zheludev, Periodic splines and the fast Fourier transform,, Comput. Math. & Math Phys., 32 (1992), 149.   Google Scholar

[35]

V. A. Zheludev, Interpolatory subdivision schemes with infinite masks originated from splines,, Advances in Comp. Math., 25 (2006), 475.  doi: 10.1007/s10444-004-4149-6.  Google Scholar

show all references

References:
[1]

O. Amrani, A. Averbuch, T. Cohen and V. A. Zheludev, Symmetric interpolatory framelets and their error correction properties,, International Journal of Wavelets, 5 (2007), 541.  doi: 10.1142/S0219691307001896.  Google Scholar

[2]

A. Averbuch and V. Zheludev, Construction of biorthogonal discrete wavelet transforms using interpolatory splines,, Applied and Comp. Harmonic Analysis, 12 (2002), 25.  doi: 10.1006/acha.2001.0367.  Google Scholar

[3]

A. Averbuch and V. Zheludev, Wavelet transforms generated by splines,, International Journal of Wavelets, 5 (2007), 257.  doi: 10.1142/S0219691307001756.  Google Scholar

[4]

A. Z. Averbuch, A. B. Pevnyi and V. A. Zheludev, Biorthogonal Butterworth wavelets derived from discrete interpolatory splines,, IEEE Trans. on Sign. Proc., 49 (2001), 2682.  doi: 10.1109/78.960415.  Google Scholar

[5]

A. Z. Averbuch, A. B. Pevnyi and V. A. Zheludev, Butterworth wavelet transforms derived from discrete interpolatory splines: Recursive implementation,, Signal Processing, 81 (2001), 2363.   Google Scholar

[6]

A. Z. Averbuch, V. A. Zheludev and T. Cohen, Interpolatory frames in signal space,, IEEE Trans. Sign. Proc., 54 (2006), 2126.  doi: 10.1109/TSP.2006.870562.  Google Scholar

[7]

A. Z. Averbuch, V. A. Zheludev and T. Cohen, Tight and sibling frames originated from discrete splines,, Sign. Proc. J., 86 (2006), 1632.  doi: 10.1016/j.sigpro.2005.09.007.  Google Scholar

[8]

H. Bölcskei, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks,, IEEE Transactions on Sign. Proc., 46 (1998), 3256.   Google Scholar

[9]

C. K. Chui and W. He, Compactly supported tight frames associated with refinable functions,, Applied and Comp. Harmonic Analysis, 8 (2000), 293.  doi: 10.1006/acha.2000.0301.  Google Scholar

[10]

C. K. Chui, W. He and J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments,, Applied and Comp. Harmonic Analysis, 13 (2002), 224.  doi: 10.1016/S1063-5203(02)00510-9.  Google Scholar

[11]

Z. Cvetković and M. Vetterli, Oversampled filter banks,, IEEE Transactions on Signal Processing, 46 (1998), 1245.   Google Scholar

[12]

I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: Mra-based constructions of wavelet frames,, Applied and Computational Harmonic Analysis, 14 (2003), 1.  doi: 10.1016/S1063-5203(02)00511-0.  Google Scholar

[13]

B. Dong and Z. Shen, Pseudo-splines, wavelets and framelets,, Applied and Computational Harmonic Analysis, 22 (2007), 78.  doi: 10.1016/j.acha.2006.04.008.  Google Scholar

[14]

D. H. Foster, K. Amano, S. M. C. Nascimento and M. J. Foster, Frequency of metamerism in natural scenes,, Journal of the Optical Society of America A, 23 (2006), 2359.   Google Scholar

[15]

T. Goldstein and S. Osher, The split {Bregman} method for l1-regularized problems,, SIAM J. Imaging Sciences, 2 (2009), 323.  doi: 10.1137/080725891.  Google Scholar

[16]

M. Golub, M. Nathan, A. Averbuch, A. Kagan, V. A. Zheludev and R. Malinsky, Snapshot spectral imaging based on digital cameras,, US Patent Application Publication Golub et al., (2013).   Google Scholar

[17]

V. K. Goyal, J. Kovacevic and J. A. Kelner, Quantized frame expansions with erasures,, Appl. and Comput. Harmonic Analysis, 10 (2001), 203.  doi: 10.1006/acha.2000.0340.  Google Scholar

[18]

V. K. Goyal, M. Vetterli and N. T. Thao, Quantized overcomplete expansions in $\mathbbR^n$: Analysis, synthesis and algorithms,, IEEE Trans. on Information Theory, 44 (1998), 16.  doi: 10.1109/18.650985.  Google Scholar

[19]

B. Han, S. Song Goh and Z. Shen, Tight periodic wavelet frames and approximation orders,, Applied and Computational Harmonic Analysis, 31 (2011), 228.  doi: 10.1016/j.acha.2010.12.001.  Google Scholar

[20]

C. Herley and M. Vetterli, Wavelets and recursive filter banks,, IEEE Trans. Signal Proc., 41 (1993), 2536.  doi: 10.1109/78.229887.  Google Scholar

[21]

J. Kovacevic, P. L. Dragotti and V. K. Goyal, Filter bank frame expansions with erasures,, IEEE Trans. Inform, 48 (2002), 1439.  doi: 10.1109/TIT.2002.1003832.  Google Scholar

[22]

A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing,, New York, (2010).   Google Scholar

[23]

S. Osher, J. Cai, B. Dong and Z. Shen, Image restoration: Total variation, wavelet frames, and beyond,, Journal of the American Mathematical Society, 25 (2012), 1033.  doi: 10.1090/S0894-0347-2012-00740-1.  Google Scholar

[24]

G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. II,, Springer, (1971).   Google Scholar

[25]

J. Romberg, E. Candes and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,, Communications on Pure and Applied Mathematics, 59 (2006), 1207.  doi: 10.1002/cpa.20124.  Google Scholar

[26]

A. Ron and Z. Shen, Compactly supported tight affine spline frames in$ l^2(\mathbbR)$,, Mathematics of Computation, 67 (1998), 191.  doi: 10.1090/S0025-5718-98-00898-9.  Google Scholar

[27]

I. J. Schoenberg, Contribution to the problem of approximation of equidistant data by analytic functions,, Quart. Appl. Math., 4 (1946), 45.   Google Scholar

[28]

Z. Shen, Wavelet frames and image restorations,, in Proc. Int. Congress of Mathematicians. Vol. IV (eds. Rajendra Bhatia), (2010), 2834.   Google Scholar

[29]

Z. Shen, J. Cai and S. Osher, Split Bregman methods and frame based image restoration,, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 8 (2009), 337.  doi: 10.1137/090753504.  Google Scholar

[30]

Z. Shen H. Ji and Y. Xu, Wavelet frame based image restoration with missing/damaged pixels,, East Asia Journal on Applied Mathematics, 1 (2011), 108.   Google Scholar

[31]

G. Strang and G. Fix, A Fourier analysis of the finite element variational method,, Construct. Asp. Funct. Anal., 57 (2011), 793.  doi: 10.1007/978-3-642-10984-3_7.  Google Scholar

[32]

V. A. Zheludev, V. N. Malozemov and A. B. Pevnyi, Filter banks and frames in the discrete periodic case,, in Proceedings of the St. Petersburg Mathematical Society. Vol. XIV, (2009), 1.   Google Scholar

[33]

V. A. Zheludev, Local spline approximation on a uniform grid,, Zh. Vychisl. Mat. i Mat. Fiz., 27 (1987), 1296.   Google Scholar

[34]

V. A. Zheludev, Periodic splines and the fast Fourier transform,, Comput. Math. & Math Phys., 32 (1992), 149.   Google Scholar

[35]

V. A. Zheludev, Interpolatory subdivision schemes with infinite masks originated from splines,, Advances in Comp. Math., 25 (2006), 475.  doi: 10.1007/s10444-004-4149-6.  Google Scholar

[1]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[2]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[3]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[6]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[7]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[8]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[9]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021005

[10]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[11]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[12]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[13]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[14]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[15]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[20]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

[Back to Top]