Advanced Search
Article Contents
Article Contents

Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials

Abstract Related Papers Cited by
  • We consider inverse boundary value problems for the Schrödinger equations in two dimensions. Within less regular classes of potentials, we establish a conditional stability estimate of logarithmic order. Moreover we prove the uniqueness within $L^p$-class of potentials with $p>2$.
    Mathematics Subject Classification: Primary: 35R30, 30G20; Secondary: 35J10.


    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams and J. J. F. Fournier, Sobolev Spaces, $2^{nd}$ edition, Elsevier/Academic Press, Amsterdam, 2003.


    G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.doi: 10.1080/00036818808839730.


    K. Astala, D. Faraco and K. M. Rogers, Rough potential recovery in the plane, preprint, arXiv:1304.1317.


    E. Blåsten, The Inverse Problem of the Schrödinger Equation in the Plane: A Dissection of Bukhgeim's Result, Licentiate thesis, University of Helsinki, 2010.


    E. Blåsten, On the Gel'fand-Calderón Inverse Problem in Two Dimensions, Ph.D. thesis, University of Helsinki, 2013.


    A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., 16 (2008), 19-33.doi: 10.1515/jiip.2008.002.


    L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.


    O. Yu. Imanuvilov and M. Yamamoto, Inverse boundary value problem for linear Schrödinger equation in two dimensions, preprint, arXiv:1208.3775.


    O. Yu. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries, doi: 10.1007/s00032-013-0205-3.


    J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, New York-Heidelberg, 1972.


    L. Liu, Stability Estimates for the Two Dimensional Inverse Conductivity Problem, Ph.D. thesis, University of Rochester, 1997.


    N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.doi: 10.1088/0266-5611/17/5/313.


    C. Miranda, Partial Differential Equations of Elliptic Type, $2^{nd}$ revised edition, Springer-Verlag, New York-Berlin, 1970.


    A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96.doi: 10.2307/2118653.


    R. G. Novikov and M. Santacesaria, A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions, doi: 10.1515/JIIP.2011.003.


    R. G. Novikov and M. Santacesaria, Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions. doi: 10.1016/j.bulsci.2011.04.007.


    M. Santacesaria, New global stability estimates for the Calderón problem in two dimensions, J. Inst. Math. Jussieu, 12 (2013), 553-569.doi: 10.1017/S147474801200076X.


    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. doi: 10.2307/1971291.


    G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011, 39 pp.doi: 10.1088/0266-5611/25/12/123011.


    I. N. Vekua, Generalized Analytic Functions, Pergamon Press, London-Paris-Frankfurt, 1962.

  • 加载中

Article Metrics

HTML views() PDF downloads(161) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint