August  2015, 9(3): 709-723. doi: 10.3934/ipi.2015.9.709

Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials

1. 

Department of Mathematics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

2. 

Department of Mathematics, Colorado State University,101 Weber Building, Fort Colins, CO 80523-1784, United States

3. 

Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro Tokyo 153-8914

Received  October 2014 Revised  February 2015 Published  July 2015

We consider inverse boundary value problems for the Schrödinger equations in two dimensions. Within less regular classes of potentials, we establish a conditional stability estimate of logarithmic order. Moreover we prove the uniqueness within $L^p$-class of potentials with $p>2$.
Citation: Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003).   Google Scholar

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.  doi: 10.1080/00036818808839730.  Google Scholar

[3]

K. Astala, D. Faraco and K. M. Rogers, Rough potential recovery in the plane, preprint,, , ().   Google Scholar

[4]

E. Blåsten, The Inverse Problem of the Schrödinger Equation in the Plane: A Dissection of Bukhgeim's Result,, Licentiate thesis, (2010).   Google Scholar

[5]

E. Blåsten, On the Gel'fand-Calderón Inverse Problem in Two Dimensions,, Ph.D. thesis, (2013).   Google Scholar

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inverse Ill-Posed Probl., 16 (2008), 19.  doi: 10.1515/jiip.2008.002.  Google Scholar

[7]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998).   Google Scholar

[8]

O. Yu. Imanuvilov and M. Yamamoto, Inverse boundary value problem for linear Schrödinger equation in two dimensions, preprint,, , ().   Google Scholar

[9]

O. Yu. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems, by Dirichlet-to-Neumann map on subboundaries, ().  doi: 10.1007/s00032-013-0205-3.  Google Scholar

[10]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972).   Google Scholar

[11]

L. Liu, Stability Estimates for the Two Dimensional Inverse Conductivity Problem,, Ph.D. thesis, (1997).   Google Scholar

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[13]

C. Miranda, Partial Differential Equations of Elliptic Type,, $2^{nd}$ revised edition, (1970).   Google Scholar

[14]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar

[15]

R. G. Novikov and M. Santacesaria, A global stability estimate for the Gel'fand-Calderón, inverse problem in two dimensions, ().  doi: 10.1515/JIIP.2011.003.  Google Scholar

[16]

R. G. Novikov and M. Santacesaria, Global uniqueness and reconstruction for the, multi-channel Gel'fand-Calderón inverse problem in two dimensions., ().  doi: 10.1016/j.bulsci.2011.04.007.  Google Scholar

[17]

M. Santacesaria, New global stability estimates for the Calderón problem in two dimensions,, J. Inst. Math. Jussieu, 12 (2013), 553.  doi: 10.1017/S147474801200076X.  Google Scholar

[18]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value, problem., ().  doi: 10.2307/1971291.  Google Scholar

[19]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

[20]

I. N. Vekua, Generalized Analytic Functions,, Pergamon Press, (1962).   Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003).   Google Scholar

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.  doi: 10.1080/00036818808839730.  Google Scholar

[3]

K. Astala, D. Faraco and K. M. Rogers, Rough potential recovery in the plane, preprint,, , ().   Google Scholar

[4]

E. Blåsten, The Inverse Problem of the Schrödinger Equation in the Plane: A Dissection of Bukhgeim's Result,, Licentiate thesis, (2010).   Google Scholar

[5]

E. Blåsten, On the Gel'fand-Calderón Inverse Problem in Two Dimensions,, Ph.D. thesis, (2013).   Google Scholar

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inverse Ill-Posed Probl., 16 (2008), 19.  doi: 10.1515/jiip.2008.002.  Google Scholar

[7]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998).   Google Scholar

[8]

O. Yu. Imanuvilov and M. Yamamoto, Inverse boundary value problem for linear Schrödinger equation in two dimensions, preprint,, , ().   Google Scholar

[9]

O. Yu. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems, by Dirichlet-to-Neumann map on subboundaries, ().  doi: 10.1007/s00032-013-0205-3.  Google Scholar

[10]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972).   Google Scholar

[11]

L. Liu, Stability Estimates for the Two Dimensional Inverse Conductivity Problem,, Ph.D. thesis, (1997).   Google Scholar

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[13]

C. Miranda, Partial Differential Equations of Elliptic Type,, $2^{nd}$ revised edition, (1970).   Google Scholar

[14]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar

[15]

R. G. Novikov and M. Santacesaria, A global stability estimate for the Gel'fand-Calderón, inverse problem in two dimensions, ().  doi: 10.1515/JIIP.2011.003.  Google Scholar

[16]

R. G. Novikov and M. Santacesaria, Global uniqueness and reconstruction for the, multi-channel Gel'fand-Calderón inverse problem in two dimensions., ().  doi: 10.1016/j.bulsci.2011.04.007.  Google Scholar

[17]

M. Santacesaria, New global stability estimates for the Calderón problem in two dimensions,, J. Inst. Math. Jussieu, 12 (2013), 553.  doi: 10.1017/S147474801200076X.  Google Scholar

[18]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value, problem., ().  doi: 10.2307/1971291.  Google Scholar

[19]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

[20]

I. N. Vekua, Generalized Analytic Functions,, Pergamon Press, (1962).   Google Scholar

[1]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[2]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[3]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[9]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[18]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[19]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (14)

[Back to Top]