• Previous Article
    Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map
  • IPI Home
  • This Issue
  • Next Article
    The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions
August  2015, 9(3): 749-766. doi: 10.3934/ipi.2015.9.749

Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results

1. 

Case Western Reserve University, Department of Mathematics, Applied Mathematics, and Statistics, Cleveland, OH 44106, United States, United States, United States

2. 

University of Auckland, Department of Mathematics, Auckland, New Zealand, New Zealand

3. 

University of Eastern Finland, Department of Applied Physics, Kuopio, Finland

4. 

Rensselaer Polytechnic Institute, Department of Mathematics, Troy, NY 12180, United States

5. 

Case Western Reserve University, Department of Radiology, Cleveland, OH 44106, United States

Received  April 2014 Revised  January 2015 Published  July 2015

Artificial boundary conditions have long been an active research topic in numerical approximation of scattering waves: The truncation of the computational domain and the assignment of the conditions along the fictitious boundary must be done so that no spurious reflections occur. In inverse boundary value problems, a similar problem appears when the estimation of the unknowns is restricted to a domain that represents the whole domain of the solutions of a partial differential equation with unknown coefficient. This problem is significantly more challenging than general scattering problems, because the coefficients representing the unknown material parameter of interest are not known in the truncated portion and assigning suitable condition on the fictitious boundary is part of the problem also. The problem is addressed by defining a Dirichlet-to-Neumann map, or Steklov-Poincaré map, on the boundary of the domain truncation. In this paper we describe the procedure, provide a theoretical justification and illustrate with computed examples the limitations of imposing fixed boundary condition. Extensions of the proposed approach will be presented in a sequel article.
Citation: Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749
References:
[1]

D. Calvetti, J. P. Kaipio and E. Somersalo, Aristotelian prior boundary conditions,, Int. J. Math. Comp. Sci., 1 (2006), 63. Google Scholar

[2]

D. Calvetti and E. Somersalo, Statistical compensation of boundary clutter in image deblurring,, Inverse Problems, 21 (2005), 1697. doi: 10.1088/0266-5611/21/5/012. Google Scholar

[3]

D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing - Ten Lectures on Subjective Computing,, Springer Verlag, (2007). Google Scholar

[4]

D. Calvetti, P. J, Hadwin, J. M. J. Huttunen, J. P. Kaipio and E. Somersalo, Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Computational results,, Inv. Probl. Imaging., 12 (2015). Google Scholar

[5]

D. Givoli, Numerical Methods for Problems in Infinite Domains,, Elsevier, (1992). Google Scholar

[6]

D. Givoli, Recent advances in the DtN FE method,, Arch. Comput. Meth. Engin., 6 (1999), 71. doi: 10.1007/BF02736182. Google Scholar

[7]

P. Grisvard, Elliptic Boundary Value Problems in Non-Smooth Domains,, SIAM, (2011). Google Scholar

[8]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions,, J. Comp. Phys., 122 (1995), 231. doi: 10.1006/jcph.1995.1210. Google Scholar

[9]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems,, J. Comp. Phys., 201 (2004), 630. doi: 10.1016/j.jcp.2004.06.012. Google Scholar

[10]

E. Jonsson, Partial Dirichlet to Neumann Maps in the Approximate Reconstruction of Conductivity Distribution,, PhD Thesis, (1997). Google Scholar

[11]

E. Jonsson, Electrical conductivity reconstruction using nonlocal boundary conditions,, SIAM J. Appl. Math., 59 (1999), 1582. doi: 10.1137/S0036139997327770. Google Scholar

[12]

T.-J. Kao, G. J. Saulnier, H. Xia, C. Tamma, J. C. Newell and D. Isaacson, A compensated radiolucent electrode array for combined EIT and mammography,, Physiol. Meas., 28 (2007). doi: 10.1088/0967-3334/28/7/S22. Google Scholar

[13]

B. S. Kim, G. Boverman, J. C. Newell, G. J. Saulnier and D. Isaacson, The complete electrode model for EIT in a mammography geometry,, Physiol. Meas., 28 (2007). doi: 10.1088/0967-3334/28/7/S05. Google Scholar

[14]

J. B. Keller and D. Givoli, Exact non-reflecting boundary conditions,, J. Comp. Phys., 82 (1989), 172. doi: 10.1016/0021-9991(89)90041-7. Google Scholar

[15]

M. H. Loke and R. D. Barker, Practical techniques for 3D resistivity surveys and data inversion,, Geophys. Prospecting, 44 (1996), 499. Google Scholar

[16]

D. Calvetti, D. McGivney and E. Somersalo, Left and right preconditioning for electrical impedance tomography with structural information,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/5/055015. Google Scholar

[17]

D. McGivney, D. Calvetti and E. Somersalo, Quantitative imaging with electrical impedance spectroscopy,, Phys. Med. Biol., 57 (2012). doi: 10.1088/0031-9155/57/22/7289. Google Scholar

[18]

D. McGivney, Statistical Preconditioners and Quantitative Imaging in Electrical Impedance Tomography,, PhD Thesis, (2013). Google Scholar

[19]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations,, Oxford University Press, (1999). Google Scholar

[20]

E. Somersalo, D. Isaacson and M. Cheney, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math. 52 (1992), 52 (1992), 1023. doi: 10.1137/0152060. Google Scholar

[21]

H. Triebel, Interpolation Theory, Function Spaces Differential Operators,, 2nd ed. Barth, (1995). Google Scholar

[22]

Y. Zou and Z. Guo, A review of electrical impedance techniques for breast cancer detection,, Med. Eng. Phys., 25 (2003), 79. doi: 10.1016/S1350-4533(02)00194-7. Google Scholar

show all references

References:
[1]

D. Calvetti, J. P. Kaipio and E. Somersalo, Aristotelian prior boundary conditions,, Int. J. Math. Comp. Sci., 1 (2006), 63. Google Scholar

[2]

D. Calvetti and E. Somersalo, Statistical compensation of boundary clutter in image deblurring,, Inverse Problems, 21 (2005), 1697. doi: 10.1088/0266-5611/21/5/012. Google Scholar

[3]

D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing - Ten Lectures on Subjective Computing,, Springer Verlag, (2007). Google Scholar

[4]

D. Calvetti, P. J, Hadwin, J. M. J. Huttunen, J. P. Kaipio and E. Somersalo, Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Computational results,, Inv. Probl. Imaging., 12 (2015). Google Scholar

[5]

D. Givoli, Numerical Methods for Problems in Infinite Domains,, Elsevier, (1992). Google Scholar

[6]

D. Givoli, Recent advances in the DtN FE method,, Arch. Comput. Meth. Engin., 6 (1999), 71. doi: 10.1007/BF02736182. Google Scholar

[7]

P. Grisvard, Elliptic Boundary Value Problems in Non-Smooth Domains,, SIAM, (2011). Google Scholar

[8]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions,, J. Comp. Phys., 122 (1995), 231. doi: 10.1006/jcph.1995.1210. Google Scholar

[9]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems,, J. Comp. Phys., 201 (2004), 630. doi: 10.1016/j.jcp.2004.06.012. Google Scholar

[10]

E. Jonsson, Partial Dirichlet to Neumann Maps in the Approximate Reconstruction of Conductivity Distribution,, PhD Thesis, (1997). Google Scholar

[11]

E. Jonsson, Electrical conductivity reconstruction using nonlocal boundary conditions,, SIAM J. Appl. Math., 59 (1999), 1582. doi: 10.1137/S0036139997327770. Google Scholar

[12]

T.-J. Kao, G. J. Saulnier, H. Xia, C. Tamma, J. C. Newell and D. Isaacson, A compensated radiolucent electrode array for combined EIT and mammography,, Physiol. Meas., 28 (2007). doi: 10.1088/0967-3334/28/7/S22. Google Scholar

[13]

B. S. Kim, G. Boverman, J. C. Newell, G. J. Saulnier and D. Isaacson, The complete electrode model for EIT in a mammography geometry,, Physiol. Meas., 28 (2007). doi: 10.1088/0967-3334/28/7/S05. Google Scholar

[14]

J. B. Keller and D. Givoli, Exact non-reflecting boundary conditions,, J. Comp. Phys., 82 (1989), 172. doi: 10.1016/0021-9991(89)90041-7. Google Scholar

[15]

M. H. Loke and R. D. Barker, Practical techniques for 3D resistivity surveys and data inversion,, Geophys. Prospecting, 44 (1996), 499. Google Scholar

[16]

D. Calvetti, D. McGivney and E. Somersalo, Left and right preconditioning for electrical impedance tomography with structural information,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/5/055015. Google Scholar

[17]

D. McGivney, D. Calvetti and E. Somersalo, Quantitative imaging with electrical impedance spectroscopy,, Phys. Med. Biol., 57 (2012). doi: 10.1088/0031-9155/57/22/7289. Google Scholar

[18]

D. McGivney, Statistical Preconditioners and Quantitative Imaging in Electrical Impedance Tomography,, PhD Thesis, (2013). Google Scholar

[19]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations,, Oxford University Press, (1999). Google Scholar

[20]

E. Somersalo, D. Isaacson and M. Cheney, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math. 52 (1992), 52 (1992), 1023. doi: 10.1137/0152060. Google Scholar

[21]

H. Triebel, Interpolation Theory, Function Spaces Differential Operators,, 2nd ed. Barth, (1995). Google Scholar

[22]

Y. Zou and Z. Guo, A review of electrical impedance techniques for breast cancer detection,, Med. Eng. Phys., 25 (2003), 79. doi: 10.1016/S1350-4533(02)00194-7. Google Scholar

[1]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[2]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[3]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[4]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[5]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[6]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[7]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems & Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[8]

Lucio Boccardo. Some Dirichlet problems with bad coercivity. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 319-329. doi: 10.3934/dcds.2002.8.319

[9]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

[10]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[11]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[14]

Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks & Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483

[15]

Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889

[16]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[17]

Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 201-210. doi: 10.3934/dcds.2004.10.201

[18]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[19]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[20]

Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

[Back to Top]