• Previous Article
    Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map
  • IPI Home
  • This Issue
  • Next Article
    The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions
August  2015, 9(3): 749-766. doi: 10.3934/ipi.2015.9.749

Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results

1. 

Case Western Reserve University, Department of Mathematics, Applied Mathematics, and Statistics, Cleveland, OH 44106, United States, United States, United States

2. 

University of Auckland, Department of Mathematics, Auckland, New Zealand, New Zealand

3. 

University of Eastern Finland, Department of Applied Physics, Kuopio, Finland

4. 

Rensselaer Polytechnic Institute, Department of Mathematics, Troy, NY 12180, United States

5. 

Case Western Reserve University, Department of Radiology, Cleveland, OH 44106, United States

Received  April 2014 Revised  January 2015 Published  July 2015

Artificial boundary conditions have long been an active research topic in numerical approximation of scattering waves: The truncation of the computational domain and the assignment of the conditions along the fictitious boundary must be done so that no spurious reflections occur. In inverse boundary value problems, a similar problem appears when the estimation of the unknowns is restricted to a domain that represents the whole domain of the solutions of a partial differential equation with unknown coefficient. This problem is significantly more challenging than general scattering problems, because the coefficients representing the unknown material parameter of interest are not known in the truncated portion and assigning suitable condition on the fictitious boundary is part of the problem also. The problem is addressed by defining a Dirichlet-to-Neumann map, or Steklov-Poincaré map, on the boundary of the domain truncation. In this paper we describe the procedure, provide a theoretical justification and illustrate with computed examples the limitations of imposing fixed boundary condition. Extensions of the proposed approach will be presented in a sequel article.
Citation: Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749
References:
[1]

D. Calvetti, J. P. Kaipio and E. Somersalo, Aristotelian prior boundary conditions,, Int. J. Math. Comp. Sci., 1 (2006), 63.   Google Scholar

[2]

D. Calvetti and E. Somersalo, Statistical compensation of boundary clutter in image deblurring,, Inverse Problems, 21 (2005), 1697.  doi: 10.1088/0266-5611/21/5/012.  Google Scholar

[3]

D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing - Ten Lectures on Subjective Computing,, Springer Verlag, (2007).   Google Scholar

[4]

D. Calvetti, P. J, Hadwin, J. M. J. Huttunen, J. P. Kaipio and E. Somersalo, Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Computational results,, Inv. Probl. Imaging., 12 (2015).   Google Scholar

[5]

D. Givoli, Numerical Methods for Problems in Infinite Domains,, Elsevier, (1992).   Google Scholar

[6]

D. Givoli, Recent advances in the DtN FE method,, Arch. Comput. Meth. Engin., 6 (1999), 71.  doi: 10.1007/BF02736182.  Google Scholar

[7]

P. Grisvard, Elliptic Boundary Value Problems in Non-Smooth Domains,, SIAM, (2011).   Google Scholar

[8]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions,, J. Comp. Phys., 122 (1995), 231.  doi: 10.1006/jcph.1995.1210.  Google Scholar

[9]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems,, J. Comp. Phys., 201 (2004), 630.  doi: 10.1016/j.jcp.2004.06.012.  Google Scholar

[10]

E. Jonsson, Partial Dirichlet to Neumann Maps in the Approximate Reconstruction of Conductivity Distribution,, PhD Thesis, (1997).   Google Scholar

[11]

E. Jonsson, Electrical conductivity reconstruction using nonlocal boundary conditions,, SIAM J. Appl. Math., 59 (1999), 1582.  doi: 10.1137/S0036139997327770.  Google Scholar

[12]

T.-J. Kao, G. J. Saulnier, H. Xia, C. Tamma, J. C. Newell and D. Isaacson, A compensated radiolucent electrode array for combined EIT and mammography,, Physiol. Meas., 28 (2007).  doi: 10.1088/0967-3334/28/7/S22.  Google Scholar

[13]

B. S. Kim, G. Boverman, J. C. Newell, G. J. Saulnier and D. Isaacson, The complete electrode model for EIT in a mammography geometry,, Physiol. Meas., 28 (2007).  doi: 10.1088/0967-3334/28/7/S05.  Google Scholar

[14]

J. B. Keller and D. Givoli, Exact non-reflecting boundary conditions,, J. Comp. Phys., 82 (1989), 172.  doi: 10.1016/0021-9991(89)90041-7.  Google Scholar

[15]

M. H. Loke and R. D. Barker, Practical techniques for 3D resistivity surveys and data inversion,, Geophys. Prospecting, 44 (1996), 499.   Google Scholar

[16]

D. Calvetti, D. McGivney and E. Somersalo, Left and right preconditioning for electrical impedance tomography with structural information,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/5/055015.  Google Scholar

[17]

D. McGivney, D. Calvetti and E. Somersalo, Quantitative imaging with electrical impedance spectroscopy,, Phys. Med. Biol., 57 (2012).  doi: 10.1088/0031-9155/57/22/7289.  Google Scholar

[18]

D. McGivney, Statistical Preconditioners and Quantitative Imaging in Electrical Impedance Tomography,, PhD Thesis, (2013).   Google Scholar

[19]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations,, Oxford University Press, (1999).   Google Scholar

[20]

E. Somersalo, D. Isaacson and M. Cheney, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math. 52 (1992), 52 (1992), 1023.  doi: 10.1137/0152060.  Google Scholar

[21]

H. Triebel, Interpolation Theory, Function Spaces Differential Operators,, 2nd ed. Barth, (1995).   Google Scholar

[22]

Y. Zou and Z. Guo, A review of electrical impedance techniques for breast cancer detection,, Med. Eng. Phys., 25 (2003), 79.  doi: 10.1016/S1350-4533(02)00194-7.  Google Scholar

show all references

References:
[1]

D. Calvetti, J. P. Kaipio and E. Somersalo, Aristotelian prior boundary conditions,, Int. J. Math. Comp. Sci., 1 (2006), 63.   Google Scholar

[2]

D. Calvetti and E. Somersalo, Statistical compensation of boundary clutter in image deblurring,, Inverse Problems, 21 (2005), 1697.  doi: 10.1088/0266-5611/21/5/012.  Google Scholar

[3]

D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing - Ten Lectures on Subjective Computing,, Springer Verlag, (2007).   Google Scholar

[4]

D. Calvetti, P. J, Hadwin, J. M. J. Huttunen, J. P. Kaipio and E. Somersalo, Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Computational results,, Inv. Probl. Imaging., 12 (2015).   Google Scholar

[5]

D. Givoli, Numerical Methods for Problems in Infinite Domains,, Elsevier, (1992).   Google Scholar

[6]

D. Givoli, Recent advances in the DtN FE method,, Arch. Comput. Meth. Engin., 6 (1999), 71.  doi: 10.1007/BF02736182.  Google Scholar

[7]

P. Grisvard, Elliptic Boundary Value Problems in Non-Smooth Domains,, SIAM, (2011).   Google Scholar

[8]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions,, J. Comp. Phys., 122 (1995), 231.  doi: 10.1006/jcph.1995.1210.  Google Scholar

[9]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems,, J. Comp. Phys., 201 (2004), 630.  doi: 10.1016/j.jcp.2004.06.012.  Google Scholar

[10]

E. Jonsson, Partial Dirichlet to Neumann Maps in the Approximate Reconstruction of Conductivity Distribution,, PhD Thesis, (1997).   Google Scholar

[11]

E. Jonsson, Electrical conductivity reconstruction using nonlocal boundary conditions,, SIAM J. Appl. Math., 59 (1999), 1582.  doi: 10.1137/S0036139997327770.  Google Scholar

[12]

T.-J. Kao, G. J. Saulnier, H. Xia, C. Tamma, J. C. Newell and D. Isaacson, A compensated radiolucent electrode array for combined EIT and mammography,, Physiol. Meas., 28 (2007).  doi: 10.1088/0967-3334/28/7/S22.  Google Scholar

[13]

B. S. Kim, G. Boverman, J. C. Newell, G. J. Saulnier and D. Isaacson, The complete electrode model for EIT in a mammography geometry,, Physiol. Meas., 28 (2007).  doi: 10.1088/0967-3334/28/7/S05.  Google Scholar

[14]

J. B. Keller and D. Givoli, Exact non-reflecting boundary conditions,, J. Comp. Phys., 82 (1989), 172.  doi: 10.1016/0021-9991(89)90041-7.  Google Scholar

[15]

M. H. Loke and R. D. Barker, Practical techniques for 3D resistivity surveys and data inversion,, Geophys. Prospecting, 44 (1996), 499.   Google Scholar

[16]

D. Calvetti, D. McGivney and E. Somersalo, Left and right preconditioning for electrical impedance tomography with structural information,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/5/055015.  Google Scholar

[17]

D. McGivney, D. Calvetti and E. Somersalo, Quantitative imaging with electrical impedance spectroscopy,, Phys. Med. Biol., 57 (2012).  doi: 10.1088/0031-9155/57/22/7289.  Google Scholar

[18]

D. McGivney, Statistical Preconditioners and Quantitative Imaging in Electrical Impedance Tomography,, PhD Thesis, (2013).   Google Scholar

[19]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations,, Oxford University Press, (1999).   Google Scholar

[20]

E. Somersalo, D. Isaacson and M. Cheney, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math. 52 (1992), 52 (1992), 1023.  doi: 10.1137/0152060.  Google Scholar

[21]

H. Triebel, Interpolation Theory, Function Spaces Differential Operators,, 2nd ed. Barth, (1995).   Google Scholar

[22]

Y. Zou and Z. Guo, A review of electrical impedance techniques for breast cancer detection,, Med. Eng. Phys., 25 (2003), 79.  doi: 10.1016/S1350-4533(02)00194-7.  Google Scholar

[1]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[5]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[14]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[15]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[16]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[17]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[18]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[Back to Top]