• Previous Article
    PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem
  • IPI Home
  • This Issue
  • Next Article
    Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results
August  2015, 9(3): 767-789. doi: 10.3934/ipi.2015.9.767

Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map

1. 

Case Western Reserve University, Department of Mathematics, Applied Mathematics, and Statistics, Cleveland, OH 44106

2. 

University of Auckland, Department of Mathematics, Auckland

3. 

University of Eastern Finland, Department of Applied Physics, Kuopio

Received  April 2014 Revised  January 2015 Published  July 2015

In [3], the authors discussed the electrical impedance tomography (EIT) problem, in which the computational domain with an unknown conductivity distribution comprises only a portion of the whole conducting body, and a boundary condition along the artificial boundary needs to be set so as to minimally disturbs the estimate in the domain of interest. It was shown that a partial Dirichlet-to-Neumann operator, or Steklov-Poincaré map, provides theoretically a perfect boundary condition. However, since the boundary condition depends on the conductivity in the truncated portion of the conductive body, it is itself an unknown that needs to be estimated along with the conductivity of interest. In this article, we develop further the computational methodology, replacing the unknown integral kernel with a low dimensional approximation. The viability of the approach is demonstrated with finite element simulations as well as with real phantom data.
Citation: Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767
References:
[1]

R. Adams and J. Fournier, Sobolev Spaces,, Second edition, (2003).   Google Scholar

[2]

D. C. Barber and B. H. Brown, Applied potential tomography,, J. Phys. E: Sci. Instrum., 17 (1984), 723.  doi: 10.1088/0022-3735/17/9/002.  Google Scholar

[3]

D. Calvetti, P. J. Hadwin, J. M. J. Huttunen, J. P. Kaipio, D. McGivney, E. Somersalo and J. Volzer, Artificial boundary conditions and domain turncation in electrical impedance tomography. Part I: Theory and preliminary results,, Inv. Probl. imaging, 12 (2015).   Google Scholar

[4]

D. Calvetti and E. Somersalo, Statistical compensation of boundary clutter in image debarring,, Inverse Problems, 21 (2005), 1697.  doi: 10.1088/0266-5611/21/5/012.  Google Scholar

[5]

M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography,, SIAM Rev., 41 (1999), 85.  doi: 10.1137/S0036144598333613.  Google Scholar

[6]

K.-S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography,, IEEE Trans. Biomed. Eng., 3 (1989), 918.   Google Scholar

[7]

J. Heino, S. Arridge, J. Sikora and E. Somersalo, Anisotropic effects in highly scattering media,, Phys. Rev. E, 68 (2003).  doi: 10.1103/PhysRevE.68.031908.  Google Scholar

[8]

I. T. Jolliffe, Principal Component Analysis,, Second edition, (2002).   Google Scholar

[9]

E. Jonsson, Partial Dirichlet to Neumann Maps in the Approximate Reconstruction of Conductivity Distribution,, PhD Thesis, (1997).   Google Scholar

[10]

E. Jonsson, Electrical conductivity reconstruction using nonlocal boundary conditions,, SIAM J. Appl. Math., 59 (1999), 1582.  doi: 10.1137/S0036139997327770.  Google Scholar

[11]

J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems,, Applied Mathematical Sciences, (2005).   Google Scholar

[12]

F. Lindgren, H. Rue and J. Lindström, An explicit link between gaussian Markov random fields: The stochastic partial differential equation approach,, J. Royal Stat. Soc. B, 73 (2011), 423.  doi: 10.1111/j.1467-9868.2011.00777.x.  Google Scholar

[13]

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning,, The MIT Press, (2006).   Google Scholar

[14]

L. Roininen, J. M. J. Huttunen and S. Lasanen, Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography,, Inv. Probl. Imaging, 8 (2014), 561.  doi: 10.3934/ipi.2014.8.561.  Google Scholar

[15]

S. Salsa, Partial Differential Equations in Action: From Modelling to Theory,, Springer Verlag Italia, (2008).   Google Scholar

[16]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math., 52 (1992), 1023.  doi: 10.1137/0152060.  Google Scholar

[17]

P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model,, IEEE Trans. Biomed. Eng., 46 (1999), 1150.  doi: 10.1109/10.784147.  Google Scholar

[18]

K. Yosida, Functional Analysis,, Springer Verlag, (1980).   Google Scholar

[19]

P. Whittle, Stochastic processes in several dimensions,, Bull. Inst. Int. Statist., 40 (1963), 974.   Google Scholar

show all references

References:
[1]

R. Adams and J. Fournier, Sobolev Spaces,, Second edition, (2003).   Google Scholar

[2]

D. C. Barber and B. H. Brown, Applied potential tomography,, J. Phys. E: Sci. Instrum., 17 (1984), 723.  doi: 10.1088/0022-3735/17/9/002.  Google Scholar

[3]

D. Calvetti, P. J. Hadwin, J. M. J. Huttunen, J. P. Kaipio, D. McGivney, E. Somersalo and J. Volzer, Artificial boundary conditions and domain turncation in electrical impedance tomography. Part I: Theory and preliminary results,, Inv. Probl. imaging, 12 (2015).   Google Scholar

[4]

D. Calvetti and E. Somersalo, Statistical compensation of boundary clutter in image debarring,, Inverse Problems, 21 (2005), 1697.  doi: 10.1088/0266-5611/21/5/012.  Google Scholar

[5]

M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography,, SIAM Rev., 41 (1999), 85.  doi: 10.1137/S0036144598333613.  Google Scholar

[6]

K.-S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography,, IEEE Trans. Biomed. Eng., 3 (1989), 918.   Google Scholar

[7]

J. Heino, S. Arridge, J. Sikora and E. Somersalo, Anisotropic effects in highly scattering media,, Phys. Rev. E, 68 (2003).  doi: 10.1103/PhysRevE.68.031908.  Google Scholar

[8]

I. T. Jolliffe, Principal Component Analysis,, Second edition, (2002).   Google Scholar

[9]

E. Jonsson, Partial Dirichlet to Neumann Maps in the Approximate Reconstruction of Conductivity Distribution,, PhD Thesis, (1997).   Google Scholar

[10]

E. Jonsson, Electrical conductivity reconstruction using nonlocal boundary conditions,, SIAM J. Appl. Math., 59 (1999), 1582.  doi: 10.1137/S0036139997327770.  Google Scholar

[11]

J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems,, Applied Mathematical Sciences, (2005).   Google Scholar

[12]

F. Lindgren, H. Rue and J. Lindström, An explicit link between gaussian Markov random fields: The stochastic partial differential equation approach,, J. Royal Stat. Soc. B, 73 (2011), 423.  doi: 10.1111/j.1467-9868.2011.00777.x.  Google Scholar

[13]

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning,, The MIT Press, (2006).   Google Scholar

[14]

L. Roininen, J. M. J. Huttunen and S. Lasanen, Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography,, Inv. Probl. Imaging, 8 (2014), 561.  doi: 10.3934/ipi.2014.8.561.  Google Scholar

[15]

S. Salsa, Partial Differential Equations in Action: From Modelling to Theory,, Springer Verlag Italia, (2008).   Google Scholar

[16]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math., 52 (1992), 1023.  doi: 10.1137/0152060.  Google Scholar

[17]

P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model,, IEEE Trans. Biomed. Eng., 46 (1999), 1150.  doi: 10.1109/10.784147.  Google Scholar

[18]

K. Yosida, Functional Analysis,, Springer Verlag, (1980).   Google Scholar

[19]

P. Whittle, Stochastic processes in several dimensions,, Bull. Inst. Int. Statist., 40 (1963), 974.   Google Scholar

[1]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[2]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[3]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[4]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[5]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[6]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[7]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems & Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[8]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[9]

Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5247-5287. doi: 10.3934/dcds.2020227

[10]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

[11]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[12]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[13]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020072

[14]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028

[15]

Victor Meng Hwee Ong, David J. Nott, Taeryon Choi, Ajay Jasra. Flexible online multivariate regression with variational Bayes and the matrix-variate Dirichlet process. Foundations of Data Science, 2019, 1 (2) : 129-156. doi: 10.3934/fods.2019006

[16]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[17]

Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011

[18]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020296

[19]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[20]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (8)

[Back to Top]