• Previous Article
    PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem
  • IPI Home
  • This Issue
  • Next Article
    Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results
August  2015, 9(3): 767-789. doi: 10.3934/ipi.2015.9.767

Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map

1. 

Case Western Reserve University, Department of Mathematics, Applied Mathematics, and Statistics, Cleveland, OH 44106

2. 

University of Auckland, Department of Mathematics, Auckland

3. 

University of Eastern Finland, Department of Applied Physics, Kuopio

Received  April 2014 Revised  January 2015 Published  July 2015

In [3], the authors discussed the electrical impedance tomography (EIT) problem, in which the computational domain with an unknown conductivity distribution comprises only a portion of the whole conducting body, and a boundary condition along the artificial boundary needs to be set so as to minimally disturbs the estimate in the domain of interest. It was shown that a partial Dirichlet-to-Neumann operator, or Steklov-Poincaré map, provides theoretically a perfect boundary condition. However, since the boundary condition depends on the conductivity in the truncated portion of the conductive body, it is itself an unknown that needs to be estimated along with the conductivity of interest. In this article, we develop further the computational methodology, replacing the unknown integral kernel with a low dimensional approximation. The viability of the approach is demonstrated with finite element simulations as well as with real phantom data.
Citation: Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems and Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767
References:
[1]

R. Adams and J. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[2]

D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E: Sci. Instrum., 17 (1984), 723-733. doi: 10.1088/0022-3735/17/9/002.

[3]

D. Calvetti, P. J. Hadwin, J. M. J. Huttunen, J. P. Kaipio, D. McGivney, E. Somersalo and J. Volzer, Artificial boundary conditions and domain turncation in electrical impedance tomography. Part I: Theory and preliminary results, Inv. Probl. imaging, 12 (2015).

[4]

D. Calvetti and E. Somersalo, Statistical compensation of boundary clutter in image debarring, Inverse Problems, 21 (2005), 1697-1714. doi: 10.1088/0266-5611/21/5/012.

[5]

M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101. doi: 10.1137/S0036144598333613.

[6]

K.-S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 3 (1989), 918-924.

[7]

J. Heino, S. Arridge, J. Sikora and E. Somersalo, Anisotropic effects in highly scattering media, Phys. Rev. E, 68 (2003), 031908. doi: 10.1103/PhysRevE.68.031908.

[8]

I. T. Jolliffe, Principal Component Analysis, Second edition, Springer, New York, 2002.

[9]

E. Jonsson, Partial Dirichlet to Neumann Maps in the Approximate Reconstruction of Conductivity Distribution, PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1997.

[10]

E. Jonsson, Electrical conductivity reconstruction using nonlocal boundary conditions, SIAM J. Appl. Math., 59 (1999), 1582-1598. doi: 10.1137/S0036139997327770.

[11]

J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160, Springer Verlag, New York, 2005.

[12]

F. Lindgren, H. Rue and J. Lindström, An explicit link between gaussian Markov random fields: The stochastic partial differential equation approach, J. Royal Stat. Soc. B, 73 (2011), 423-498. doi: 10.1111/j.1467-9868.2011.00777.x.

[13]

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning, The MIT Press, Cambridge, MA, 2006.

[14]

L. Roininen, J. M. J. Huttunen and S. Lasanen, Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography, Inv. Probl. Imaging, 8 (2014), 561-586. doi: 10.3934/ipi.2014.8.561.

[15]

S. Salsa, Partial Differential Equations in Action: From Modelling to Theory, Springer Verlag Italia, Milano, 2008.

[16]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040. doi: 10.1137/0152060.

[17]

P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), 1150-1160. doi: 10.1109/10.784147.

[18]

K. Yosida, Functional Analysis, Springer Verlag, New York, 1980.

[19]

P. Whittle, Stochastic processes in several dimensions, Bull. Inst. Int. Statist., 40 (1963), 974-994.

show all references

References:
[1]

R. Adams and J. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[2]

D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E: Sci. Instrum., 17 (1984), 723-733. doi: 10.1088/0022-3735/17/9/002.

[3]

D. Calvetti, P. J. Hadwin, J. M. J. Huttunen, J. P. Kaipio, D. McGivney, E. Somersalo and J. Volzer, Artificial boundary conditions and domain turncation in electrical impedance tomography. Part I: Theory and preliminary results, Inv. Probl. imaging, 12 (2015).

[4]

D. Calvetti and E. Somersalo, Statistical compensation of boundary clutter in image debarring, Inverse Problems, 21 (2005), 1697-1714. doi: 10.1088/0266-5611/21/5/012.

[5]

M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101. doi: 10.1137/S0036144598333613.

[6]

K.-S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 3 (1989), 918-924.

[7]

J. Heino, S. Arridge, J. Sikora and E. Somersalo, Anisotropic effects in highly scattering media, Phys. Rev. E, 68 (2003), 031908. doi: 10.1103/PhysRevE.68.031908.

[8]

I. T. Jolliffe, Principal Component Analysis, Second edition, Springer, New York, 2002.

[9]

E. Jonsson, Partial Dirichlet to Neumann Maps in the Approximate Reconstruction of Conductivity Distribution, PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1997.

[10]

E. Jonsson, Electrical conductivity reconstruction using nonlocal boundary conditions, SIAM J. Appl. Math., 59 (1999), 1582-1598. doi: 10.1137/S0036139997327770.

[11]

J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160, Springer Verlag, New York, 2005.

[12]

F. Lindgren, H. Rue and J. Lindström, An explicit link between gaussian Markov random fields: The stochastic partial differential equation approach, J. Royal Stat. Soc. B, 73 (2011), 423-498. doi: 10.1111/j.1467-9868.2011.00777.x.

[13]

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning, The MIT Press, Cambridge, MA, 2006.

[14]

L. Roininen, J. M. J. Huttunen and S. Lasanen, Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography, Inv. Probl. Imaging, 8 (2014), 561-586. doi: 10.3934/ipi.2014.8.561.

[15]

S. Salsa, Partial Differential Equations in Action: From Modelling to Theory, Springer Verlag Italia, Milano, 2008.

[16]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040. doi: 10.1137/0152060.

[17]

P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), 1150-1160. doi: 10.1109/10.784147.

[18]

K. Yosida, Functional Analysis, Springer Verlag, New York, 1980.

[19]

P. Whittle, Stochastic processes in several dimensions, Bull. Inst. Int. Statist., 40 (1963), 974-994.

[1]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[2]

Georgi Vodev. Approximation of the elastic Dirichlet-to-Neumann map. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022042

[3]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[4]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[5]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[6]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[7]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[8]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems and Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[9]

Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1061-1084. doi: 10.3934/dcdss.2021158

[10]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[11]

Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5247-5287. doi: 10.3934/dcds.2020227

[12]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

[13]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[14]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072

[15]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[16]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control and Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028

[17]

Zhihua Ren, Tian Wang, Hao Wu. Comments on Poincaré theorem for quasi-periodic systems. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022115

[18]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems and Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[19]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[20]

Victor Meng Hwee Ong, David J. Nott, Taeryon Choi, Ajay Jasra. Flexible online multivariate regression with variational Bayes and the matrix-variate Dirichlet process. Foundations of Data Science, 2019, 1 (2) : 129-156. doi: 10.3934/fods.2019006

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (176)
  • HTML views (0)
  • Cited by (9)

[Back to Top]