\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Deformable multi-modal image registration by maximizing Rényi's statistical dependence measure

Abstract Related Papers Cited by
  • A novel variational model for deformable multi-modal image registration is presented in this work. As an alternative to the models based on maximizing mutual information, the Rényi's statistical dependence measure of two random variables is proposed as a measure of the goodness of matching in our objective functional. The proposed model does not require an estimation of the continuous joint probability density function. Instead, it only needs observed independent instances. Moreover, the theory of reproducing kernel Hilbert space is used to simplify the computation. Experimental results and comparisons with several existing methods are provided to show the effectiveness of the model.
    Mathematics Subject Classification: 94A08, 68U10, 65D18.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. B. Ash, Information Theory, Dover Publications, 1990.

    [2]

    A. Berlinet and C. Thomas, Reproducing kernel Hilbert spaces in Probability and Statistics, Kluwer Academic Publishers, 2004.doi: 10.1007/978-1-4419-9096-9.

    [3]

    N. Akhiezer and I. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, 1993.

    [4]

    L. Alvarez, R. Deriche, T. Papadopoulo and J. Sanchez, Symmetrical dense optical flow estimation with occlusions detection, International Journal of Computer Vision, 75 (2007), 371-385.doi: 10.1007/s11263-007-0041-4.

    [5]

    N. Aronszajn, Theory of reproducing kernels, Transactions of the American mathematical society, 68 (1950), 337-404.doi: 10.1090/S0002-9947-1950-0051437-7.

    [6]

    N. Ayache, A. Guimond, A. Roche and J. Meunier, Three dimensional multimodal brain warping using the demons algorithm and adaptvie intensity correction, IEEE Trans. Med. Imag., 20 (2001), 58-69.

    [7]

    A. Bardera, M. Feixas, I. Boada and M. Sbert, High-dimensional normalized mutual information for image registration using random lines, WBIR, LNCS, Springer, 4057 (2006), 264-271.doi: 10.1007/11784012_32.

    [8]

    C. Broit, Optimal Registration of Deformed Images, PhD thesis, University of Pennsylvania, 1981.

    [9]

    R. Bajcsy and C. Broit, Matching of deformed images, Proc. Int. Conf. Pattern Recognition, (1982), 351-353.

    [10]

    R. Bajscy and S. Kovacic, Multiresolution elastic matching, Comput. Vision. Graph. Image Process, 46 (1989), 1-12.

    [11]

    R. Bajcsy, R. Lieberson and M. Reivich, A computerized system for the elastic matching of deformed radiographic images to idealized atlas images, Journal of Computer Assisted Tomogra-phy, 7 (1983), 618-625.doi: 10.1097/00004728-198308000-00008.

    [12]

    A. Bardera, M. Feixas and I. Boada, Normalized similarity measures for medical image registration, Proc. SPIE Medical Imaging SPIE, 5370 (2004), p108.

    [13]

    P. Cachier and X. Pennec, 3d non-rigid reigistration by gradient descent on a Gaussian window similarity measure using convolutions, IEEE workshop on mathematical methods in biomedical image analysis, (2000), 182-189.doi: 10.1109/MMBIA.2000.852376.

    [14]

    A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens and G. Marchal, Automated multi-modality image registration based on information theory, Information Processing in Medical Imaging, (1995), 263-274

    [15]

    A. Collignon, D. Vandermeulen, P. Suetens and G. Marchal, 3D multi-modality medical image registration using feature space clustering, Proceedings of the First International Conference on Computer Vision, Virtual Reality and Robotics in Medicine, (1995), 195-204.

    [16]

    H. M. Chan, A. C.S. Chung, S. C.H. Yu, A. Norbash and W. M. Wells III, Multi-modal image registration by minimizing Kullback-Leibler distance between expected and observed joint class histograms, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2 (2003), p570.

    [17]

    A. C. S. Chung, W. M. Wells III, A. Norbash and W. E. L. Grimson, Multi-modal image registration by minimizing kullback-Leibler distance. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2 (2002), 525-532.

    [18]

    T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-Interscience, 2 edition, 2006.

    [19]

    P. T. Evenaz , M. Bierlaire and M. Unser, Halton sampling for image registration based on mutual information, Sampling Theory Signal Image Process, 7 (2008), 141-171.

    [20]

    G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, 1996.

    [21]

    Y. Guo and C. Lu, Multi-modality image registration using mutual information based on gradient vector flow, 18th International Conference on Pattern Recognition (ICPR'06), 3 (2006), 697-700.

    [22]

    R. Gan, J. Wu, A. C. S. Chung, S. C. H. Yu and W. M. Wells III, Multiresolution image registration based on Kullback-Leibler distance, MICCAI, LNCS, Springer, 3216 (2004), 599-606.doi: 10.1007/978-3-540-30135-6_73.

    [23]

    C. Guetter, C. Xu, F. Sauer and J. Hornegger, Learning based non-rigid multi-modal image registration using Kullback-Leibler divergence, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 3750 (2005), 255-262.doi: 10.1007/11566489_32.

    [24]

    Y. He, A. B. Hamza and H. Krim, A generalized divergence measure for robust image registration, IEEE Transactions on Signal Processing, 51 (2003), 1211-1220.doi: 10.1109/TSP.2003.810305.

    [25]

    S. Henn and K. Witsch, Multimodal image registration using a variational approach, SIAM J. Sci. Comput., 25 (2003), 1429-1447.doi: 10.1137/S1064827502201424.

    [26]

    G. Hermosillo, C. C. Hotel and O. Faugeras, Variational methods for multimodal image matching, Int. J. Computer Vision, 50 (2002), 329-343.

    [27]

    D. Hill, P. Batchelor, M. Holden and D. Hawkes, Topical review: medical image registration, Physics in Medicine and Biology, 46 (2001), 1-45.

    [28]

    D. L. G. Hill, C. Studholme and D. J. Hawkes, Voxel similarity measures for automated image registration, Visualization in Biomedical Computing, SPIE Press, Bellingham, WA, 2359 (1994), 205-216.

    [29]

    B. Jian, B. Vemuri and J. Marroquin, Robust nonrigid multimodal image registration using local frequency maps. Proc. Inf. Process. Med. Imag., 3565 (2005), 504-515.doi: 10.1007/11505730_42.

    [30]

    L. R. Jorge, M. S. Juan and V. M. Rafael, Generalized regularization term for non-parametric multimodal image registration, Signal Processing, 87 (2007), 2837-2842.

    [31]

    S. Klein, M. Staring and J. P. W. Pluim, Evaluation of optimisation methods for nonrigid medical image registration using mutual information and B-splines, IEEE Trans. Image Process., 16 (2007), 2879-2890.doi: 10.1109/TIP.2007.909412.

    [32]

    M. Leventon and W. E. L. Grimson, Multi-modal volume registration using joint intensity distributions, Medical Image Computing and Computer-Assisted Interventation MICCAI98, Lecture Notes in Computer Science, 1496 (1998), 1057-1066.doi: 10.1007/BFb0056295.

    [33]

    B. Likar and F. Pernus, A hierarchical approach to elastic registration based on mutual information, Image and Vision Computing, 19 (2001), 33-44.doi: 10.1016/S0262-8856(00)00053-6.

    [34]

    T. Lu, P. Neittaanm and X. Tai, A parallel splitting up method and its application to Navier-Stokes equations, Applied Mathematics Letters, 4 (1991), 25-29.doi: 10.1016/0893-9659(91)90161-N.

    [35]

    F. Maes, A. Collignon, D. Vandermeulen, G. Marchal and P. Suetens, Multimodality image registration by maximization of mutual information, IEEE Trans Med Imaging, 16 (1997), 187-198.doi: 10.1109/42.563664.

    [36]

    F. Maes, D. Vandermeulen and P. Suetens, Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information, Medical image analysis, 3 (1999), 373-386.doi: 10.1016/S1361-8415(99)80030-9.

    [37]

    F. Maes, D. Vandermeulen and P. Suetens, Medical image registration using mutual information, Proc IEEE - special issue on emerging medical imaging technology, 91 (2003), 1699-1722.doi: 10.1109/JPROC.2003.817864.

    [38]

    M. Modat, G. R. Ridgway, Z. A. Taylor, D. J. Hawkes, N. C. Fox and S. Ourselin, A parallel-friendly normalized mutual information gradient for free-form registration, SPIE Medical Imaging: Image Processing, Proc. SPIE, 7259 (2009), 72590L.doi: 10.1117/12.811588.

    [39]

    J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, Mutual-information-based registration of medical images: A survey, IEEE Trans. Med. Imaging, 22 (2003), 986-1004.doi: 10.1109/TMI.2003.815867.

    [40]

    J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, f-Information measures in medical image registration, IEEE Trans. Med. Imaging, 23 (2004), 1508-1516.

    [41]

    A. Rényi, On measure of dependence, Acta Mathematica Academiae Scientiarum Hungaria, 10 (1959), 441-451.doi: 10.1007/BF02024507.

    [42]

    A. Roche, G. Malandain and N. Ayache, Unifying Maximum Likelihood Approaches in Medical Image Registration, International Journal of Imaging Systems and Technology, 11 (2000), 71-80.doi: 10.1002/(SICI)1098-1098(2000)11:1<71::AID-IMA8>3.3.CO;2-X.

    [43]

    A. Roche, G. Malandain, X. Pennec and N. Ayache, The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration, MICCAI'98,Springer-Verlag Berlin Heidelberg, 1496 (1998), 1115-1124.doi: 10.1007/BFb0056301.

    [44]

    M. R. Sabuncu and P. Ramadge, Using spanning graphs for efficient image registration, IEEE Transactions on Image Processing, 17 (2008), 788-797.doi: 10.1109/TIP.2008.918951.

    [45]

    M. Seppa, Continuous sampling in mutual-information registration, IEEE Trans. Med. Imaging, 17 (2008), 823-826.doi: 10.1109/TIP.2008.920738.

    [46]

    C. Studholme, D. L. G. Hill and D. J. Hawkes, Multiresolution voxel similarity measures for MR-PET registration, Lecture Notes in Computer Science In Proceedings of Information Processing in Medical Imaging, 3 (1995), 287-298.

    [47]

    C. Studholme, D. L. G. Hill and D. J. Hawkes, An overlap invariant entropy measure of 3d medical image alignment, Pattern Recognition, 32 (1999), 71-86.doi: 10.1016/S0031-3203(98)00091-0.

    [48]

    B. Schélkopf, B. K. Sriperumbudur, A. Gretton and K. Fukumizu, RKHS Representation of Measures, In Learning Theory and Approximation Workshop, Oberwolfach, Germany, 2008.

    [49]

    P. Thevenaz, M. Bierlaire and M. Unser, Halton sampling for image registration based on mutual information, Sampling Theory Signal Image Process, 7 (2008), 141-171.

    [50]

    P. A. Viola and W. M. Wells III, Alignment by maximization of mutual information, Proceedings of International Conference on Computer Vision, (1995), 16-23.doi: 10.1109/ICCV.1995.466930.

    [51]

    P. Viola and W. Wells, Alignment by maximization of mutual information, International Journal of Computer Vision, 24 (1997), 137-154.

    [52]

    J. Weickert, B. M. H. Romeny and M. A. Viergever, Efficient and reliable schemes for nonlinear diffusioin filtering, IEEE Transactions on Image Processing, 7 (1998), 398-410.

    [53]

    Y. Weiss and D. Fleet, Velocity likelihoods in biological and machine vision, Probabilistic Models of the brain, MIT Press, (2002), 81-100.

    [54]

    W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima and R. Kikinis, Multi-modal volume registration by maximizing mutual information, Medical Image Analysis, 1 (1996), 35-52.

    [55]

    Z. Zhang, Y. Jiang and H. Tsui, Consistent multi-modal non-rigid registration based on a variational approach, Pattern Recognit. Lett., 27 (2006), 715-725.doi: 10.1016/j.patrec.2005.10.018.

    [56]

    A. Zaanen, Linear Analysis, North Holland Publishing Co., 1960.

    [57]

    B. Zitova and J. Flusser, Image registration methods: A survey, Image and Vision Computing, 21 (2003), 977-1000.doi: 10.1016/S0262-8856(03)00137-9.

    [58]

    H. Zhang, Y. Chen and J. Shi, Nonparametric Image Segmentation Using Renyi's Statistical Dependence Measure, Journal of Mathematical Imaging and Vision, 44 (2012), 330-340.doi: 10.1007/s10851-012-0329-z.

    [59]

    L. Zölei, J. Fisher and W. M. Wells III, A Unified Statistical and Information Theoretic Framework for Multi-modal Image Registration, Information Processing in Medical Imaging, LNCS, 2732 (2003), 366-377.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return