• Previous Article
    A reweighted $l^2$ method for image restoration with Poisson and mixed Poisson-Gaussian noise
  • IPI Home
  • This Issue
  • Next Article
    Point-wise behavior of the Geman--McClure and the Hebert--Leahy image restoration models
August  2015, 9(3): 853-874. doi: 10.3934/ipi.2015.9.853

The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting

1. 

Laboratoire LAMSIN, ENIT, University of Tunis El Manar, B.P. 37, 1002 Tunis-Belvédère, Tunisia, Tunisia, Tunisia

Received  June 2014 Revised  March 2015 Published  July 2015

Image inpainting or disocclusion, which refers to the process of restoring a damaged image with missing information, has many applications in different fields. Different techniques can be applied to solve this problem. In particular, many variational models have appeared in the literature. These models give rise to partial differential equations for which Dirichlet boundary conditions are usually used. The basic idea of the algorithms that have been proposed in the literature is to fill-in damaged regions with available information from their surroundings. The aim of this work is to treat the case where this information is not available in a part of the boundary of the damaged region. We formulate the image inpainting problem as a nonlinear Cauchy problem. Then, we give a Nash-game formulation of this Cauchy problem and we present different numerical experiments using the finite-element method for solving the image inpainting problem.
Citation: Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853
References:
[1]

R. Aboulaïch, A. Ben Abda and M. Kallel, Missing boundary data reconstruction via an approximate optimal control,, Inverse Probl. Imaging, 2 (2008), 411.  doi: 10.3934/ipi.2008.2.411.  Google Scholar

[2]

R. Aboulaich, S. Boujena and E. El Guarmah, A nonlinear parabolic model in processing of medical image,, Math. Model. Nat. Phenom., 3 (2008), 131.  doi: 10.1051/mmnp:2008084.  Google Scholar

[3]

H. Attouch, P. Redont and A. Soubeyran, A new class of alternating proximal minimization algorithms with costs-to-move,, SIAM J. Optim., 18 (2007), 1061.  doi: 10.1137/060657248.  Google Scholar

[4]

S. Avdonin, et al., Iterative methods for solving a nonlinear boundary inverse problem in glaciology,, J. Inverse Ill-Posed Probl., 17 (2009), 239.  doi: 10.1515/JIIP.2009.018.  Google Scholar

[5]

M. Azaïez, F. Ben Belgacem and H. El Fekih, On Cauchy's problem. II. Completion, regularization and approximation,, Inverse Problems, 22 (2006), 1307.  doi: 10.1088/0266-5611/22/4/012.  Google Scholar

[6]

C. Ballester, et al., Filling-in by joint interpolation of vector fields and gray levels,, IEEE Trans. Image Process, 10 (2001), 1200.  doi: 10.1109/83.935036.  Google Scholar

[7]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087.  doi: 10.1088/0266-5611/21/3/018.  Google Scholar

[8]

A. Chakib and A. Nachaoui, Convergence analysis for finite element approximation to an inverse Cauchy problem,, Inverse Problems, 22 (2006), 1191.  doi: 10.1088/0266-5611/22/4/005.  Google Scholar

[9]

T. F. Chan, S. H. Kang and J. Shen, Euler's elastica and curvature-based inpainting,, SIAM J. Appl. Math., 63 (2002), 564.  doi: 10.1137/S0036139901390088.  Google Scholar

[10]

T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings,, SIAM J. Appl. Math., 62 (): 1019.  doi: 10.1137/S0036139900368844.  Google Scholar

[11]

T. Chan and J. Shen, Non-texture inpainting by curvature-driven diffusions,, Journal of Visual Communication and Image Representation, 12 (2001), 436.   Google Scholar

[12]

J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics,, Quart. Appl. Math., 9 (1951), 225.   Google Scholar

[13]

J. X. Cruz Neto, et al., Learning how to play Nash, potential games and alternating minimization method for structured nonconvex problems on Riemannian manifolds,, J. Convex Anal., 20 (2013), 395.   Google Scholar

[14]

H. Egger and A. Leitao, Efficient reconstruction methods for nonlinear elliptic Cauchy problems with piecewise constant solutions,, Adv. Appl. Math. Mech., 1 (2009), 729.   Google Scholar

[15]

S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model,, European J. Appl. Math., 13 (2002), 353.  doi: 10.1017/S0956792502004904.  Google Scholar

[16]

H. Grossauer and O. Scherzer, Using the complex Ginzburg-Landau equation for digital inpainting in 2D and 3D,, in Scale Space Methods in Computer Vision (eds. L. D. Griffin and M. Lillholm), (2695), 225.  doi: 10.1007/3-540-44935-3_16.  Google Scholar

[17]

A. Habbal, A topology Nash game for tumoral antiangiogenesis,, Struct. Multidiscip. Optim., 30 (2005), 404.  doi: 10.1007/s00158-005-0525-1.  Google Scholar

[18]

A. Habbal and M. Kallel, Data completion problems solved as Nash games,, Journal of Physics, 386 (2012).  doi: 10.1088/1742-6596/386/1/012004.  Google Scholar

[19]

A. Habbal and M. Kallel, Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems,, SIAM J. Control Optim., 51 (2013), 4066.  doi: 10.1137/120869808.  Google Scholar

[20]

A. Habbal, J. Petersson and M. Thellner, Multidisciplinary topology optimization solved as a Nash game,, Internat. J. Numer. Methods Engrg., 61 (2004), 949.  doi: 10.1002/nme.1093.  Google Scholar

[21]

J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations,, Dover Publications, (1953).   Google Scholar

[22]

D. N. Hào and D. Lesnic, The Cauchy problem for Laplace's equation via the conjugate gradient method,, IMA J. Appl. Math., 65 (2000), 199.  doi: 10.1093/imamat/65.2.199.  Google Scholar

[23]

A. Hasanov, Inverse coefficient problems for monotone potential operators,, Inverse Problems, 13 (1997), 1265.  doi: 10.1088/0266-5611/13/5/011.  Google Scholar

[24]

F. Hecht, New development in freefem++,, J. Numer. Math., 20 (2012), 251.   Google Scholar

[25]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III,, Grundlehren der Mathematischen Wissenschaften, (1985).   Google Scholar

[26]

P. Houston, J. Robson and E. Sauli, Discontinuous Galerkin fnite element approximation of quasilinear elliptic boundary value problems I: The scalar case,, IMA J. Numer., 50 (2005), 726.   Google Scholar

[27]

C. Johnson and V. Thomée, Error estimates for a finite element approximation of a minimal surface,, Math. Comp., 29 (1975), 343.  doi: 10.1090/S0025-5718-1975-0400741-X.  Google Scholar

[28]

S. Korotov and M. Křížek, Finite element analysis of variational crimes for a quasilinear elliptic problem in 3D,, Numer. Math., 84 (2000), 549.  doi: 10.1007/s002110050010.  Google Scholar

[29]

S. Korotov and M. Křížek, Finite element analysis of variational crimes for a nonlinear heat conduction problem in three-dimensional space,, in ENUMATH 97 (Heidelberg), (1998), 421.   Google Scholar

[30]

V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations,, (Russian) Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 64.   Google Scholar

[31]

P. Kügler and A. Leitão, Mean value iterations for nonlinear elliptic Cauchy problems,, Numer. Math., 96 (2003), 269.  doi: 10.1007/s00211-003-0477-6.  Google Scholar

[32]

M. A. Lavrentev, On the Cauchy problem for the Laplace equation,, Izv. Akd. Nauk SSSR. Ser. Mat., 50 (1956), 819.   Google Scholar

[33]

M. M. Lavrentev, On the problem of Cauchy for linear elliptic equations of the second order,, Dokl. Akad. Nauk SSSR (N.S.), 112 (1957), 195.   Google Scholar

[34]

S. Li and T. Başar, Distributed algorithms for the computation of noncooperative equilibria,, Automatica J. IFAC, 23 (1987), 523.  doi: 10.1016/0005-1098(87)90081-1.  Google Scholar

[35]

I. Ly, An iterative method for solving Cauchy problems for the $p$-Laplace operator,, Complex Var. Elliptic Equ., 55 (2010), 1079.  doi: 10.1080/17476931003628257.  Google Scholar

[36]

I. Ly and N. Tarkhanov, A variational approach to the Cauchy problem for nonlinear elliptic differential equations,, J. Inverse Ill-Posed Probl., 17 (2009), 595.  doi: 10.1515/JIIP.2009.037.  Google Scholar

[37]

S. Masnou, Disocclusion: A variational approach using level lines,, IEEE Trans. Image Process., 11 (2002), 68.  doi: 10.1109/83.982815.  Google Scholar

[38]

V. G. Maz'ya and V. P. Havin, The solutions of the Cauchy problem for the Laplace equation (uniqueness, normality, approximation),, Trudy Moskov. Mat. Obšč., 30 (1974), 61.   Google Scholar

[39]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[40]

N. N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations,, Mathematical Topics, (1995).   Google Scholar

[41]

R. Temam, Applications de l'analyse convexe au calcul des variations,, in Nonlinear Operators and the Calculus of Variations (Summer School, (1975), 208.   Google Scholar

[42]

S. Uryas'ev and R. Y. Rubinstein, On relaxation algorithms in computation of noncooperative equilibria,, IEEE Trans. Automat. Control, 39 (1994), 1263.  doi: 10.1109/9.293193.  Google Scholar

show all references

References:
[1]

R. Aboulaïch, A. Ben Abda and M. Kallel, Missing boundary data reconstruction via an approximate optimal control,, Inverse Probl. Imaging, 2 (2008), 411.  doi: 10.3934/ipi.2008.2.411.  Google Scholar

[2]

R. Aboulaich, S. Boujena and E. El Guarmah, A nonlinear parabolic model in processing of medical image,, Math. Model. Nat. Phenom., 3 (2008), 131.  doi: 10.1051/mmnp:2008084.  Google Scholar

[3]

H. Attouch, P. Redont and A. Soubeyran, A new class of alternating proximal minimization algorithms with costs-to-move,, SIAM J. Optim., 18 (2007), 1061.  doi: 10.1137/060657248.  Google Scholar

[4]

S. Avdonin, et al., Iterative methods for solving a nonlinear boundary inverse problem in glaciology,, J. Inverse Ill-Posed Probl., 17 (2009), 239.  doi: 10.1515/JIIP.2009.018.  Google Scholar

[5]

M. Azaïez, F. Ben Belgacem and H. El Fekih, On Cauchy's problem. II. Completion, regularization and approximation,, Inverse Problems, 22 (2006), 1307.  doi: 10.1088/0266-5611/22/4/012.  Google Scholar

[6]

C. Ballester, et al., Filling-in by joint interpolation of vector fields and gray levels,, IEEE Trans. Image Process, 10 (2001), 1200.  doi: 10.1109/83.935036.  Google Scholar

[7]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087.  doi: 10.1088/0266-5611/21/3/018.  Google Scholar

[8]

A. Chakib and A. Nachaoui, Convergence analysis for finite element approximation to an inverse Cauchy problem,, Inverse Problems, 22 (2006), 1191.  doi: 10.1088/0266-5611/22/4/005.  Google Scholar

[9]

T. F. Chan, S. H. Kang and J. Shen, Euler's elastica and curvature-based inpainting,, SIAM J. Appl. Math., 63 (2002), 564.  doi: 10.1137/S0036139901390088.  Google Scholar

[10]

T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings,, SIAM J. Appl. Math., 62 (): 1019.  doi: 10.1137/S0036139900368844.  Google Scholar

[11]

T. Chan and J. Shen, Non-texture inpainting by curvature-driven diffusions,, Journal of Visual Communication and Image Representation, 12 (2001), 436.   Google Scholar

[12]

J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics,, Quart. Appl. Math., 9 (1951), 225.   Google Scholar

[13]

J. X. Cruz Neto, et al., Learning how to play Nash, potential games and alternating minimization method for structured nonconvex problems on Riemannian manifolds,, J. Convex Anal., 20 (2013), 395.   Google Scholar

[14]

H. Egger and A. Leitao, Efficient reconstruction methods for nonlinear elliptic Cauchy problems with piecewise constant solutions,, Adv. Appl. Math. Mech., 1 (2009), 729.   Google Scholar

[15]

S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model,, European J. Appl. Math., 13 (2002), 353.  doi: 10.1017/S0956792502004904.  Google Scholar

[16]

H. Grossauer and O. Scherzer, Using the complex Ginzburg-Landau equation for digital inpainting in 2D and 3D,, in Scale Space Methods in Computer Vision (eds. L. D. Griffin and M. Lillholm), (2695), 225.  doi: 10.1007/3-540-44935-3_16.  Google Scholar

[17]

A. Habbal, A topology Nash game for tumoral antiangiogenesis,, Struct. Multidiscip. Optim., 30 (2005), 404.  doi: 10.1007/s00158-005-0525-1.  Google Scholar

[18]

A. Habbal and M. Kallel, Data completion problems solved as Nash games,, Journal of Physics, 386 (2012).  doi: 10.1088/1742-6596/386/1/012004.  Google Scholar

[19]

A. Habbal and M. Kallel, Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems,, SIAM J. Control Optim., 51 (2013), 4066.  doi: 10.1137/120869808.  Google Scholar

[20]

A. Habbal, J. Petersson and M. Thellner, Multidisciplinary topology optimization solved as a Nash game,, Internat. J. Numer. Methods Engrg., 61 (2004), 949.  doi: 10.1002/nme.1093.  Google Scholar

[21]

J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations,, Dover Publications, (1953).   Google Scholar

[22]

D. N. Hào and D. Lesnic, The Cauchy problem for Laplace's equation via the conjugate gradient method,, IMA J. Appl. Math., 65 (2000), 199.  doi: 10.1093/imamat/65.2.199.  Google Scholar

[23]

A. Hasanov, Inverse coefficient problems for monotone potential operators,, Inverse Problems, 13 (1997), 1265.  doi: 10.1088/0266-5611/13/5/011.  Google Scholar

[24]

F. Hecht, New development in freefem++,, J. Numer. Math., 20 (2012), 251.   Google Scholar

[25]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III,, Grundlehren der Mathematischen Wissenschaften, (1985).   Google Scholar

[26]

P. Houston, J. Robson and E. Sauli, Discontinuous Galerkin fnite element approximation of quasilinear elliptic boundary value problems I: The scalar case,, IMA J. Numer., 50 (2005), 726.   Google Scholar

[27]

C. Johnson and V. Thomée, Error estimates for a finite element approximation of a minimal surface,, Math. Comp., 29 (1975), 343.  doi: 10.1090/S0025-5718-1975-0400741-X.  Google Scholar

[28]

S. Korotov and M. Křížek, Finite element analysis of variational crimes for a quasilinear elliptic problem in 3D,, Numer. Math., 84 (2000), 549.  doi: 10.1007/s002110050010.  Google Scholar

[29]

S. Korotov and M. Křížek, Finite element analysis of variational crimes for a nonlinear heat conduction problem in three-dimensional space,, in ENUMATH 97 (Heidelberg), (1998), 421.   Google Scholar

[30]

V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations,, (Russian) Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 64.   Google Scholar

[31]

P. Kügler and A. Leitão, Mean value iterations for nonlinear elliptic Cauchy problems,, Numer. Math., 96 (2003), 269.  doi: 10.1007/s00211-003-0477-6.  Google Scholar

[32]

M. A. Lavrentev, On the Cauchy problem for the Laplace equation,, Izv. Akd. Nauk SSSR. Ser. Mat., 50 (1956), 819.   Google Scholar

[33]

M. M. Lavrentev, On the problem of Cauchy for linear elliptic equations of the second order,, Dokl. Akad. Nauk SSSR (N.S.), 112 (1957), 195.   Google Scholar

[34]

S. Li and T. Başar, Distributed algorithms for the computation of noncooperative equilibria,, Automatica J. IFAC, 23 (1987), 523.  doi: 10.1016/0005-1098(87)90081-1.  Google Scholar

[35]

I. Ly, An iterative method for solving Cauchy problems for the $p$-Laplace operator,, Complex Var. Elliptic Equ., 55 (2010), 1079.  doi: 10.1080/17476931003628257.  Google Scholar

[36]

I. Ly and N. Tarkhanov, A variational approach to the Cauchy problem for nonlinear elliptic differential equations,, J. Inverse Ill-Posed Probl., 17 (2009), 595.  doi: 10.1515/JIIP.2009.037.  Google Scholar

[37]

S. Masnou, Disocclusion: A variational approach using level lines,, IEEE Trans. Image Process., 11 (2002), 68.  doi: 10.1109/83.982815.  Google Scholar

[38]

V. G. Maz'ya and V. P. Havin, The solutions of the Cauchy problem for the Laplace equation (uniqueness, normality, approximation),, Trudy Moskov. Mat. Obšč., 30 (1974), 61.   Google Scholar

[39]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[40]

N. N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations,, Mathematical Topics, (1995).   Google Scholar

[41]

R. Temam, Applications de l'analyse convexe au calcul des variations,, in Nonlinear Operators and the Calculus of Variations (Summer School, (1975), 208.   Google Scholar

[42]

S. Uryas'ev and R. Y. Rubinstein, On relaxation algorithms in computation of noncooperative equilibria,, IEEE Trans. Automat. Control, 39 (1994), 1263.  doi: 10.1109/9.293193.  Google Scholar

[1]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[8]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[9]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[10]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[11]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[12]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[13]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[14]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]