• Previous Article
    Boundary and scattering rigidity problems in the presence of a magnetic field and a potential
  • IPI Home
  • This Issue
  • Next Article
    Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case
November  2015, 9(4): 951-970. doi: 10.3934/ipi.2015.9.951

The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media

1. 

Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece, Greece

2. 

Department of Statistics and Insurance Science, University of Piraeus, 80 Karaoli and Dimitriou Str., 185 34 Piraeus, Greece

Received  December 2014 Revised  July 2015 Published  October 2015

In this paper the problem of scattering of time-harmonic electromagnetic waves by a mixed impedance scatterer in chiral media is considered. Our scatterer is a partially coated chiral screen, for which an impedance boundary condition on one side of its boundary, and a perfectly conducting boundary condition on the other side, is satisfied. The direct scattering problem for the modified Maxwell equations is formulated and the appropriate Sobolev space setting is considered. Issues of solvability due to uniqueness and existence are discussed. The corresponding inverse scattering problem is studied and uniqueness results concerning the mixed impedance screen are proved. Further, the shape reconstruction of the boundary of the partially coated screen is established. In particular, a chiral far-field operator is introduced and new results concerning its properties are proved. A modified linear sampling method based on a factorization of the chiral far-field operator, in order to reconstruct the screen is also presented. We end up with useful conclusions and remarks for screens in chiral media.
Citation: Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951
References:
[1]

H. Ammari and J. C. Nedelec, Time-harmonic electromagnetic fields in chiral media,, in Modern Mathematical Methods in Diffraction Theory and its Applications in Engineering, (1997), 174.

[2]

H. Ammari and J. C. Nedelec, Time-harmonic electromagnetic fields in thin chiral curved layers,, SIAM J. Math. Anal., 29 (1998), 395. doi: 10.1137/S0036141096305504.

[3]

H. Ammari, K. Hamdache and J. C. Nedelec, Chirality in the Maxwell equations by the dipole approximation method,, SIAM J. Appl. Math., 59 (1999), 2045. doi: 10.1137/S0036139998334160.

[4]

C. E. Athanasiadis, P. A. Martin and I. G. Stratis, Electromagnetic scattering by a homogeneous chiral obstacle: Boundary integral equations and low-chirality approximations,, SIAM J. Appl. Math., 59 (1999), 1745. doi: 10.1137/S003613999833633X.

[5]

C. E. Athanasiadis, G. Costakis and I. G. Stratis, Electromagnetic scattering by a homogeneous chiral obstacle in a chiral environment,, IMA J. Appl. Math., 64 (2000), 245. doi: 10.1093/imamat/64.3.245.

[6]

C. E. Athanasiadis, G. Costakis and I. G. Stratis, Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: Solvability and low-frequency theory,, Math. Meth. Appl. Sci., 25 (2002), 927. doi: 10.1002/mma.321.

[7]

C. E. Athanasiadis, On the far field patterns for electromagnetic scattering by a chiral obstacle in chiral environment,, J. Math. Anal. Appl., 309 (2005), 517. doi: 10.1016/j.jmaa.2004.09.058.

[8]

C. E. Athanasiadis and E. Kardasi, Beltrami Herglotz functions for electromagnetic scattering,, Appl. Anal., 84 (2005), 145. doi: 10.1080/00036810410001658188.

[9]

C. E. Athanasiadis and N. Berketis, Scattering relations for point-source excitation in chiral media,, Math. Meth. Appl. Sci., 29 (2006), 27. doi: 10.1002/mma.662.

[10]

C. E. Athanasiadis, D. Natrosvili, V. Sevroglou and I. G. Stratis, An application of the reciprocity gap functional to inverse mixed impedance problems in elasticity,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085011.

[11]

C. E. Athanasiadis, D. Natrosvili, V. Sevroglou and I. G. Stratis, A boundary integral equations approach for direct mixed impedance problems in elasticity,, J. Integral Equations Appl., 23 (2011), 183. doi: 10.1216/JIE-2011-23-2-183.

[12]

C. E. Athanasiadis, V. Sevroglou and K. I. Skourogiannis, The direct electromagnetic scattering problem by a mixed impedance screen in chiral media,, Appl. Anal., 91 (2012), 2083. doi: 10.1080/00036811.2011.584183.

[13]

C. E. Athanasiadis, D. Natrosvili, V. Sevroglou and I. G. Stratis, A mixed impedance scattering problem for partially coated obstacles in two-dimensional linear elasticity,, in The Thirteenth International Conference on Integral Methods in Science and Engineering, ().

[14]

F. Cakoni, D. Colton and E. Darringrand, The inverse electromagnetic scattering problem for screens,, Inverse Problems, 19 (2003), 627. doi: 10.1088/0266-5611/19/3/310.

[15]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Electromagnetic Scattering Theory,, Springer-Verlag, (2005).

[16]

F. Cakoni and E. Darringrand, The inverse electromagnetic scattering problem for a mixed boundary value problem for screens,, J. Comput. Appl. Math., 174 (2005), 251. doi: 10.1016/j.cam.2004.04.012.

[17]

F. Collino, M. Fares and H. Haddar, Numerical and analytical studies of the linear sampling method in electromagnetic scattering problems,, Inverse Problems, 19 (2003), 1279. doi: 10.1088/0266-5611/19/6/004.

[18]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory,, John Wiley & Sons, (1983).

[19]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1992). doi: 10.1007/978-3-662-02835-3.

[20]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003.

[21]

D. Colton, M. Pianna and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problem,, Inverse Problems, 13 (1997), 1477. doi: 10.1088/0266-5611/13/6/005.

[22]

D. Colton, H. Haddar and M. Pianna, The linear sampling method in inverese electromagnetic scattering theory,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/057.

[23]

D. L. Jaggard, X. Sun and N. Engheta, Canonical sources and duality in chiral media,, IEEE Trans. Antennas and Propagation, 36 (1988), 1007. doi: 10.1109/8.7205.

[24]

D. L. Jaggard and N. Engheta, Chirality in electrodynamics: Modeling and applications,, in Directions in Electromagnetic Wave Modelling (eds. H. L. Bertoni and L. B. Felsen), (1991).

[25]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).

[26]

A. Lakhtakia, V. K. Varadan and V. V. Varadan, Time-harmonic Electromagnetic Fields in Chiral Media,, Lecture Notes in Physics, (1989).

[27]

A. Lakhtakia, V. K. Varadan and V. V. Varadan, Surface integral equations for scattering by PEC scatterers in isotropic chiral media,, Internat. J. Engrg. Sci., 29 (1991), 179. doi: 10.1016/0020-7225(91)90014-T.

[28]

A. Lakhtakia, Beltrami Fields in Chiral Media,, World Scientific, (1994).

[29]

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media,, Artech House, (1994).

[30]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).

[31]

P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198508885.001.0001.

[32]

G. F. Roach, I. G. Stratis and A. N. Yannacopoulos, Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics,, Princeton Series in Apllied Mathematics, (2012).

[33]

E. P. Stephan, Boundary integral equations for screen problems in $\mathbbR^3$,, Integral Equations Operator Theory, 10 (1987), 236. doi: 10.1007/BF01199079.

[34]

C. T. Tai, Dyadic Green Functions in Electromagnetic Theory,, $2^{nd}$ edition, (1994).

show all references

References:
[1]

H. Ammari and J. C. Nedelec, Time-harmonic electromagnetic fields in chiral media,, in Modern Mathematical Methods in Diffraction Theory and its Applications in Engineering, (1997), 174.

[2]

H. Ammari and J. C. Nedelec, Time-harmonic electromagnetic fields in thin chiral curved layers,, SIAM J. Math. Anal., 29 (1998), 395. doi: 10.1137/S0036141096305504.

[3]

H. Ammari, K. Hamdache and J. C. Nedelec, Chirality in the Maxwell equations by the dipole approximation method,, SIAM J. Appl. Math., 59 (1999), 2045. doi: 10.1137/S0036139998334160.

[4]

C. E. Athanasiadis, P. A. Martin and I. G. Stratis, Electromagnetic scattering by a homogeneous chiral obstacle: Boundary integral equations and low-chirality approximations,, SIAM J. Appl. Math., 59 (1999), 1745. doi: 10.1137/S003613999833633X.

[5]

C. E. Athanasiadis, G. Costakis and I. G. Stratis, Electromagnetic scattering by a homogeneous chiral obstacle in a chiral environment,, IMA J. Appl. Math., 64 (2000), 245. doi: 10.1093/imamat/64.3.245.

[6]

C. E. Athanasiadis, G. Costakis and I. G. Stratis, Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: Solvability and low-frequency theory,, Math. Meth. Appl. Sci., 25 (2002), 927. doi: 10.1002/mma.321.

[7]

C. E. Athanasiadis, On the far field patterns for electromagnetic scattering by a chiral obstacle in chiral environment,, J. Math. Anal. Appl., 309 (2005), 517. doi: 10.1016/j.jmaa.2004.09.058.

[8]

C. E. Athanasiadis and E. Kardasi, Beltrami Herglotz functions for electromagnetic scattering,, Appl. Anal., 84 (2005), 145. doi: 10.1080/00036810410001658188.

[9]

C. E. Athanasiadis and N. Berketis, Scattering relations for point-source excitation in chiral media,, Math. Meth. Appl. Sci., 29 (2006), 27. doi: 10.1002/mma.662.

[10]

C. E. Athanasiadis, D. Natrosvili, V. Sevroglou and I. G. Stratis, An application of the reciprocity gap functional to inverse mixed impedance problems in elasticity,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085011.

[11]

C. E. Athanasiadis, D. Natrosvili, V. Sevroglou and I. G. Stratis, A boundary integral equations approach for direct mixed impedance problems in elasticity,, J. Integral Equations Appl., 23 (2011), 183. doi: 10.1216/JIE-2011-23-2-183.

[12]

C. E. Athanasiadis, V. Sevroglou and K. I. Skourogiannis, The direct electromagnetic scattering problem by a mixed impedance screen in chiral media,, Appl. Anal., 91 (2012), 2083. doi: 10.1080/00036811.2011.584183.

[13]

C. E. Athanasiadis, D. Natrosvili, V. Sevroglou and I. G. Stratis, A mixed impedance scattering problem for partially coated obstacles in two-dimensional linear elasticity,, in The Thirteenth International Conference on Integral Methods in Science and Engineering, ().

[14]

F. Cakoni, D. Colton and E. Darringrand, The inverse electromagnetic scattering problem for screens,, Inverse Problems, 19 (2003), 627. doi: 10.1088/0266-5611/19/3/310.

[15]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Electromagnetic Scattering Theory,, Springer-Verlag, (2005).

[16]

F. Cakoni and E. Darringrand, The inverse electromagnetic scattering problem for a mixed boundary value problem for screens,, J. Comput. Appl. Math., 174 (2005), 251. doi: 10.1016/j.cam.2004.04.012.

[17]

F. Collino, M. Fares and H. Haddar, Numerical and analytical studies of the linear sampling method in electromagnetic scattering problems,, Inverse Problems, 19 (2003), 1279. doi: 10.1088/0266-5611/19/6/004.

[18]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory,, John Wiley & Sons, (1983).

[19]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1992). doi: 10.1007/978-3-662-02835-3.

[20]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003.

[21]

D. Colton, M. Pianna and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problem,, Inverse Problems, 13 (1997), 1477. doi: 10.1088/0266-5611/13/6/005.

[22]

D. Colton, H. Haddar and M. Pianna, The linear sampling method in inverese electromagnetic scattering theory,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/057.

[23]

D. L. Jaggard, X. Sun and N. Engheta, Canonical sources and duality in chiral media,, IEEE Trans. Antennas and Propagation, 36 (1988), 1007. doi: 10.1109/8.7205.

[24]

D. L. Jaggard and N. Engheta, Chirality in electrodynamics: Modeling and applications,, in Directions in Electromagnetic Wave Modelling (eds. H. L. Bertoni and L. B. Felsen), (1991).

[25]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).

[26]

A. Lakhtakia, V. K. Varadan and V. V. Varadan, Time-harmonic Electromagnetic Fields in Chiral Media,, Lecture Notes in Physics, (1989).

[27]

A. Lakhtakia, V. K. Varadan and V. V. Varadan, Surface integral equations for scattering by PEC scatterers in isotropic chiral media,, Internat. J. Engrg. Sci., 29 (1991), 179. doi: 10.1016/0020-7225(91)90014-T.

[28]

A. Lakhtakia, Beltrami Fields in Chiral Media,, World Scientific, (1994).

[29]

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media,, Artech House, (1994).

[30]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).

[31]

P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198508885.001.0001.

[32]

G. F. Roach, I. G. Stratis and A. N. Yannacopoulos, Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics,, Princeton Series in Apllied Mathematics, (2012).

[33]

E. P. Stephan, Boundary integral equations for screen problems in $\mathbbR^3$,, Integral Equations Operator Theory, 10 (1987), 236. doi: 10.1007/BF01199079.

[34]

C. T. Tai, Dyadic Green Functions in Electromagnetic Theory,, $2^{nd}$ edition, (1994).

[1]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[2]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems & Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[3]

Dinh-Liem Nguyen. The factorization method for the Drude-Born-Fedorov model for periodic chiral structures. Inverse Problems & Imaging, 2016, 10 (2) : 519-547. doi: 10.3934/ipi.2016010

[4]

Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems & Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591

[5]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[6]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[7]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[8]

Giovanni Alessandrini, Eva Sincich, Sergio Vessella. Stable determination of surface impedance on a rough obstacle by far field data. Inverse Problems & Imaging, 2013, 7 (2) : 341-351. doi: 10.3934/ipi.2013.7.341

[9]

Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277

[10]

Heping Dong, Deyue Zhang, Yukun Guo. A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Problems & Imaging, 2019, 13 (1) : 177-195. doi: 10.3934/ipi.2019010

[11]

Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547

[12]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[13]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[14]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[15]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[16]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[17]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[18]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[19]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[20]

Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

[Back to Top]