November  2015, 9(4): 971-1002. doi: 10.3934/ipi.2015.9.971

Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case

1. 

Laboratoire POEMS, ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762, Palaiseau Cedex, France, France

2. 

Institut de Mathématiques, Université de Toulouse, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France

Received  November 2014 Revised  June 2015 Published  October 2015

In this paper we address some ill-posed problems involving the heat or the wave equation in one dimension, in particular the backward heat equation and the heat/wave equation with lateral Cauchy data. The main objective is to introduce some variational mixed formulations of quasi-reversibility which enable us to solve these ill-posed problems by using some classical Lagrange finite elements. The inverse obstacle problems with initial condition and lateral Cauchy data for heat/wave equation are also considered, by using an elementary level set method combined with the quasi-reversibility method. Some numerical experiments are presented to illustrate the feasibility for our strategy in all those situations.
Citation: Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971
References:
[1]

K. A. Ames and L. E. Payne, Continuous dependence on modeling for some well-posed perturbations of backward heat equation,, J. of Inequal. & Appl., 3 (1999), 51.  doi: 10.1155/S1025583499000041.  Google Scholar

[2]

M. Bonnet, Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 5239.  doi: 10.1016/j.cma.2005.10.026.  Google Scholar

[3]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087.  doi: 10.1088/0266-5611/21/3/018.  Google Scholar

[4]

L. Bourgeois, About stability and regularization of ill-posed elliptic Cauchy problems: the case of C1,1 domains,, M2AN, 44 (2010), 715.  doi: 10.1051/m2an/2010016.  Google Scholar

[5]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem,, Inverse Problems and Imaging, 4 (2010), 351.  doi: 10.3934/ipi.2010.4.351.  Google Scholar

[6]

L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system,, Inverse Problems and Imaging, 8 (2014), 23.  doi: 10.3934/ipi.2014.8.23.  Google Scholar

[7]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095016.  Google Scholar

[8]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[9]

H. Brezis, Analyse fonctionnelle, Théorie et applications,, Masson, (1983).   Google Scholar

[10]

M. de Buhan and M. Kray, A new approach to solve the inverse scattering problem for waves: combining the TRAC and the adaptive inverse methods,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/8/085009.  Google Scholar

[11]

R. Chapko, R. Kress and J-R Yoon, On the numerical solution of an inverse boundary value problem for the heat equation,, Inverse Problems, 14 (1998), 853.  doi: 10.1088/0266-5611/14/4/006.  Google Scholar

[12]

Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/8/085001.  Google Scholar

[13]

P.-G. Ciarlet, The Finite Element Method for Elliptic Problems,, North Holland, (1978).   Google Scholar

[14]

G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well-posed problems,, Elect. J. of Diff. Eqns., 8 (1994), 1.   Google Scholar

[15]

C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium,, SIAM J. Sci. Comp., 30 (2008), 1.  doi: 10.1137/06066970X.  Google Scholar

[16]

J. Dardé, A. Hannukainen and N. Hyvönen, An $H_\text{div}$-based mixed quasi-reversibility method for solving elliptic Cauchy problems,, SIAM J. Num. Anal., 51 (2013), 2123.  doi: 10.1137/120895123.  Google Scholar

[17]

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements,, Springer, (2004).  doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[18]

H. Harbrecht and J. Tausch, On the numerical solution of a shape optimization problem for the heat equation,, SIAM J. Sci. Comput., 35 (2013).  doi: 10.1137/110855703.  Google Scholar

[19]

L. Hörmander, Linear Partial Differential Operators,, Springer Verlag, (1976).   Google Scholar

[20]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/5/055010.  Google Scholar

[21]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075005.  Google Scholar

[22]

V. Isakov, Inverse obstacle problems,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123002.  Google Scholar

[23]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Applied Mathematical Sciences, (1996).  doi: 10.1007/978-1-4612-5338-9.  Google Scholar

[24]

M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications (Inverse and Ill-Posed Problems),, VSP, (2004).  doi: 10.1515/9783110915549.  Google Scholar

[25]

R. Lattès and J.-L. Lions, Méthode de Quasi-Réversibilité et Applications,, Dunod, (1967).   Google Scholar

[26]

C. D. Lines and S. N. Chandler-Wilde, A time domain point source method for inverse scattering by rough surfaces,, Computing, 75 (2005), 157.  doi: 10.1007/s00607-004-0109-8.  Google Scholar

[27]

J.-L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications, Vol. 2, Dunod, (1968).   Google Scholar

[28]

L. E. Payne, Improperly Posed Problems in Partial Differential Equations,, SIAM, (1975).   Google Scholar

[29]

K. D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its application,, J. Eur. Math. Soc., 15 (2013), 681.  doi: 10.4171/JEMS/371.  Google Scholar

[30]

R. E. Puzyrev and A. A. Shlapunov, On an ill-posed problem for the heat equation,, Journal of Siberian Federal University, 5 (2012), 337.   Google Scholar

show all references

References:
[1]

K. A. Ames and L. E. Payne, Continuous dependence on modeling for some well-posed perturbations of backward heat equation,, J. of Inequal. & Appl., 3 (1999), 51.  doi: 10.1155/S1025583499000041.  Google Scholar

[2]

M. Bonnet, Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 5239.  doi: 10.1016/j.cma.2005.10.026.  Google Scholar

[3]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087.  doi: 10.1088/0266-5611/21/3/018.  Google Scholar

[4]

L. Bourgeois, About stability and regularization of ill-posed elliptic Cauchy problems: the case of C1,1 domains,, M2AN, 44 (2010), 715.  doi: 10.1051/m2an/2010016.  Google Scholar

[5]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem,, Inverse Problems and Imaging, 4 (2010), 351.  doi: 10.3934/ipi.2010.4.351.  Google Scholar

[6]

L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system,, Inverse Problems and Imaging, 8 (2014), 23.  doi: 10.3934/ipi.2014.8.23.  Google Scholar

[7]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095016.  Google Scholar

[8]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[9]

H. Brezis, Analyse fonctionnelle, Théorie et applications,, Masson, (1983).   Google Scholar

[10]

M. de Buhan and M. Kray, A new approach to solve the inverse scattering problem for waves: combining the TRAC and the adaptive inverse methods,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/8/085009.  Google Scholar

[11]

R. Chapko, R. Kress and J-R Yoon, On the numerical solution of an inverse boundary value problem for the heat equation,, Inverse Problems, 14 (1998), 853.  doi: 10.1088/0266-5611/14/4/006.  Google Scholar

[12]

Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/8/085001.  Google Scholar

[13]

P.-G. Ciarlet, The Finite Element Method for Elliptic Problems,, North Holland, (1978).   Google Scholar

[14]

G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well-posed problems,, Elect. J. of Diff. Eqns., 8 (1994), 1.   Google Scholar

[15]

C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium,, SIAM J. Sci. Comp., 30 (2008), 1.  doi: 10.1137/06066970X.  Google Scholar

[16]

J. Dardé, A. Hannukainen and N. Hyvönen, An $H_\text{div}$-based mixed quasi-reversibility method for solving elliptic Cauchy problems,, SIAM J. Num. Anal., 51 (2013), 2123.  doi: 10.1137/120895123.  Google Scholar

[17]

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements,, Springer, (2004).  doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[18]

H. Harbrecht and J. Tausch, On the numerical solution of a shape optimization problem for the heat equation,, SIAM J. Sci. Comput., 35 (2013).  doi: 10.1137/110855703.  Google Scholar

[19]

L. Hörmander, Linear Partial Differential Operators,, Springer Verlag, (1976).   Google Scholar

[20]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/5/055010.  Google Scholar

[21]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075005.  Google Scholar

[22]

V. Isakov, Inverse obstacle problems,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123002.  Google Scholar

[23]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Applied Mathematical Sciences, (1996).  doi: 10.1007/978-1-4612-5338-9.  Google Scholar

[24]

M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications (Inverse and Ill-Posed Problems),, VSP, (2004).  doi: 10.1515/9783110915549.  Google Scholar

[25]

R. Lattès and J.-L. Lions, Méthode de Quasi-Réversibilité et Applications,, Dunod, (1967).   Google Scholar

[26]

C. D. Lines and S. N. Chandler-Wilde, A time domain point source method for inverse scattering by rough surfaces,, Computing, 75 (2005), 157.  doi: 10.1007/s00607-004-0109-8.  Google Scholar

[27]

J.-L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications, Vol. 2, Dunod, (1968).   Google Scholar

[28]

L. E. Payne, Improperly Posed Problems in Partial Differential Equations,, SIAM, (1975).   Google Scholar

[29]

K. D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its application,, J. Eur. Math. Soc., 15 (2013), 681.  doi: 10.4171/JEMS/371.  Google Scholar

[30]

R. E. Puzyrev and A. A. Shlapunov, On an ill-posed problem for the heat equation,, Journal of Siberian Federal University, 5 (2012), 337.   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[10]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[11]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[12]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[13]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[17]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[18]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (14)

[Back to Top]