• Previous Article
    A divide-alternate-and-conquer approach for localization and shape identification of multiple scatterers in heterogeneous media using dynamic XFEM
  • IPI Home
  • This Issue
  • Next Article
    Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves
February  2016, 10(1): 131-163. doi: 10.3934/ipi.2016.10.131

The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain

1. 

Laboratory of Mathematics, Institute of Engineering, Hiroshima University, Higashi Hiroshima 739-8527

Received  October 2014 Revised  July 2015 Published  February 2016

In this paper, a time domain enclosure method for an inverse obstacle scattering problem of electromagnetic wave is introduced. The wave as a solution of Maxwell's equations is generated by an applied volumetric current having an orientation and supported outside an unknown obstacle and observed on the same support over a finite time interval. It is assumed that the obstacle is a perfect conductor. Two types of analytical formulae which employ a single observed wave and explicitly contain information about the geometry of the obstacle are given. In particular, an effect of the orientation of the current is catched in one of two formulae. Two corollaries concerning with the detection of the points on the surface of the obstacle nearest to the centre of the current support and curvatures at the points are also given.
Citation: Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131
References:
[1]

H. Ammari, G. Bao and J. L. Fleming, An inverse source problem for Maxwell's equations in magnetoencephalography,, SIAM J. Appl. Math., 62 (2002), 1369.  doi: 10.1137/S0036139900373927.  Google Scholar

[2]

H. Ammari, C. Latiri-Grouz and J.-C. Nédélec, The Leontovich boundary value problem for the time-harmonic Maxwell equations,, Asymptotic Analysis, 18 (1998), 33.   Google Scholar

[3]

C. Athanasiadis, P. A. Martin and I. G. Stratis, On the scattering of point-generated electromagnetic waves by a perfectly conducting sphere, and related near-field inverse problems, Short Communication,, ZAMM$\cdot$Z. Angew. Math. Mech. 83 (2003), 83 (2003), 129.  doi: 10.1002/zamm.200310012.  Google Scholar

[4]

C. A. Balanis, Antenna Theory, Analysis and Design,, $3^{rd}$ edition, (2005).   Google Scholar

[5]

N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals,, $2^{nd}$ edition, (1986).   Google Scholar

[6]

R. J. Burkholder, I. J. Gupta and J. T. Johnson, Comparison of monostatic and bistatic radar images,, IEEE Antennas and Propagation Magazine, 45 (2003), 41.   Google Scholar

[7]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, CBMS-NSF, (2009).  doi: 10.1137/1.9780898719291.  Google Scholar

[8]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, $3^{rd}$ edition, (2013).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[9]

R. Courant and D. Hilbert, Methoden der Mathematischen Physik,, Vol. 2, (1937).   Google Scholar

[10]

R. Dautray and J.-L. Lions., Mathematical Analysis and Numerical Methods for Sciences and Technology, Spectral Theory and Applications,, Vol. 3, (1990).   Google Scholar

[11]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology,, Vol. 5, (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 ed., (1998).   Google Scholar

[13]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data,, Inverse Problems, 15 (1999), 1231.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[14]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/5/055010.  Google Scholar

[15]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/4/045010.  Google Scholar

[16]

M. Ikehata, An inverse acoustic scattering problem inside a cavity with dynamical back-scattering data,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/9/095016.  Google Scholar

[17]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: III. Sound-soft obstacle and bistatic data,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/8/085013.  Google Scholar

[18]

M. Ikehata, Extracting the geometry of an obstacle and a zeroth-order coefficient of a boundary condition via the enclosure method using a single reflected wave over a finite time interval,, Inverse Problems, 30 (2014).  doi: 10.1088/0266-5611/30/4/045011.  Google Scholar

[19]

M. Ikehata and H. Itou, On reconstruction of a cavity in a linearized viscoelastic body from infinitely many transient boundary data,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/12/125003.  Google Scholar

[20]

M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095004.  Google Scholar

[21]

V. Isakov, Inverse obstacle problems,, Topical review, 25 (2009).  doi: 10.1088/0266-5611/25/12/123002.  Google Scholar

[22]

P. D. Lax and R. S. Phillips, The scattering of sound waves by an obstacle,, Comm. Pure and Appl. Math., 30 (1977), 195.  doi: 10.1002/cpa.3160300204.  Google Scholar

[23]

H. Liu, M. Yamamoto and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering,, Inverse Problems, 23 (2007), 2357.  doi: 10.1088/0266-5611/23/6/005.  Google Scholar

[24]

A. Majda and M. Taylor, Inverse scattering problems for transparent obstacles, electromagnetic waves, and hyperbolic systems,, Comm. in Partial Differential Equations, 2 (1977), 395.  doi: 10.1080/03605307708820035.  Google Scholar

[25]

J.-C. Nédélec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems,, Springer, (2001).  doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[26]

B. O'Neill, Elementary Differential Geometry,, Revised, (2006).   Google Scholar

show all references

References:
[1]

H. Ammari, G. Bao and J. L. Fleming, An inverse source problem for Maxwell's equations in magnetoencephalography,, SIAM J. Appl. Math., 62 (2002), 1369.  doi: 10.1137/S0036139900373927.  Google Scholar

[2]

H. Ammari, C. Latiri-Grouz and J.-C. Nédélec, The Leontovich boundary value problem for the time-harmonic Maxwell equations,, Asymptotic Analysis, 18 (1998), 33.   Google Scholar

[3]

C. Athanasiadis, P. A. Martin and I. G. Stratis, On the scattering of point-generated electromagnetic waves by a perfectly conducting sphere, and related near-field inverse problems, Short Communication,, ZAMM$\cdot$Z. Angew. Math. Mech. 83 (2003), 83 (2003), 129.  doi: 10.1002/zamm.200310012.  Google Scholar

[4]

C. A. Balanis, Antenna Theory, Analysis and Design,, $3^{rd}$ edition, (2005).   Google Scholar

[5]

N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals,, $2^{nd}$ edition, (1986).   Google Scholar

[6]

R. J. Burkholder, I. J. Gupta and J. T. Johnson, Comparison of monostatic and bistatic radar images,, IEEE Antennas and Propagation Magazine, 45 (2003), 41.   Google Scholar

[7]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, CBMS-NSF, (2009).  doi: 10.1137/1.9780898719291.  Google Scholar

[8]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, $3^{rd}$ edition, (2013).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[9]

R. Courant and D. Hilbert, Methoden der Mathematischen Physik,, Vol. 2, (1937).   Google Scholar

[10]

R. Dautray and J.-L. Lions., Mathematical Analysis and Numerical Methods for Sciences and Technology, Spectral Theory and Applications,, Vol. 3, (1990).   Google Scholar

[11]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology,, Vol. 5, (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 ed., (1998).   Google Scholar

[13]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data,, Inverse Problems, 15 (1999), 1231.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[14]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/5/055010.  Google Scholar

[15]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/4/045010.  Google Scholar

[16]

M. Ikehata, An inverse acoustic scattering problem inside a cavity with dynamical back-scattering data,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/9/095016.  Google Scholar

[17]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: III. Sound-soft obstacle and bistatic data,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/8/085013.  Google Scholar

[18]

M. Ikehata, Extracting the geometry of an obstacle and a zeroth-order coefficient of a boundary condition via the enclosure method using a single reflected wave over a finite time interval,, Inverse Problems, 30 (2014).  doi: 10.1088/0266-5611/30/4/045011.  Google Scholar

[19]

M. Ikehata and H. Itou, On reconstruction of a cavity in a linearized viscoelastic body from infinitely many transient boundary data,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/12/125003.  Google Scholar

[20]

M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095004.  Google Scholar

[21]

V. Isakov, Inverse obstacle problems,, Topical review, 25 (2009).  doi: 10.1088/0266-5611/25/12/123002.  Google Scholar

[22]

P. D. Lax and R. S. Phillips, The scattering of sound waves by an obstacle,, Comm. Pure and Appl. Math., 30 (1977), 195.  doi: 10.1002/cpa.3160300204.  Google Scholar

[23]

H. Liu, M. Yamamoto and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering,, Inverse Problems, 23 (2007), 2357.  doi: 10.1088/0266-5611/23/6/005.  Google Scholar

[24]

A. Majda and M. Taylor, Inverse scattering problems for transparent obstacles, electromagnetic waves, and hyperbolic systems,, Comm. in Partial Differential Equations, 2 (1977), 395.  doi: 10.1080/03605307708820035.  Google Scholar

[25]

J.-C. Nédélec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems,, Springer, (2001).  doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[26]

B. O'Neill, Elementary Differential Geometry,, Revised, (2006).   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[6]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[7]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[10]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[11]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[14]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[15]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]