Advanced Search
Article Contents
Article Contents

A partial data result for less regular conductivities in admissible geometries

Abstract Related Papers Cited by
  • We consider the Calderón problem with partial data in certain admissible geometries, that is, on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. We show that measuring the Dirichlet--to--Neumann map on roughly half of the boundary determines a conductivity that has essentially 3/2 derivatives. As a corollary, we strengthen a partial data result due to Kenig, Sjöstrand, and Uhlmann.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.


    \begin{equation} \\ \end{equation}
  • [1]

    K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299.doi: 10.4007/annals.2006.163.265.


    A. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, in Comm. Partial Differential Equations, 27 (2002), 653-668.doi: 10.1081/PDE-120002868.


    A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65-73.


    P. Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, preprint, arXiv:1411.8001.


    D. Dos Santos Ferreira, C. E. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries, Comm. Partial Differential Equations, 38 (2013), 50-68.doi: 10.1080/03605302.2012.736911.


    D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.doi: 10.1007/s00222-009-0196-4.


    B. Haberman and D. Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 496-516.doi: 10.1215/00127094-2019591.


    B. Haberman, Uniqueness in Calderón's problems for conductivities with unbounded gradient, Comm. Math. Phys., 340 (2015), 639-659.doi: 10.1007/s00220-015-2460-3.


    C. E. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Anal. PDE, 6 (2013), 2003-2048.doi: 10.2140/apde.2013.6.2003.


    C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math. J., 157 (2011), 369-419.doi: 10.1215/00127094-1272903.


    C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.doi: 10.4007/annals.2007.165.567.


    K. Knudsen, The Calderón problem with partial data for less smooth conductivities, Comm. Partial Differential Equations, 31 (2006), 57-71.doi: 10.1080/03605300500361610.


    K. Knudsen and M. Salo, Determining nonsmooth first order terms from partial boundary measurements, Inverse Probl. Imaging, 1 (2007), 349-369.doi: 10.3934/ipi.2007.1.349.


    M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Comm. Partial Differential Equations, 31 (2006), 1639-1666.doi: 10.1080/03605300500530420.


    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.doi: 10.2307/1971291.


    C. F. Tomalsky, Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian, SIAM J. Math. Anal., 29 (1998), 116-133.doi: 10.1137/S0036141096301038.


    G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011.doi: 10.1088/0266-5611/25/12/123011.


    G. Zhang, Uniqueness in the Calderón problem with partial data for less smooth conductivities, Inverse Problems, 28 (2012), 105008, 18pp.doi: 10.1088/0266-5611/28/10/105008.

  • 加载中

Article Metrics

HTML views() PDF downloads(142) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint