• Previous Article
    The topological gradient method for semi-linear problems and application to edge detection and noise removal
  • IPI Home
  • This Issue
  • Next Article
    On the choice of the Tikhonov regularization parameter and the discretization level: A discrepancy-based strategy
February  2016, 10(1): 27-50. doi: 10.3934/ipi.2016.10.27

A fractional-order derivative based variational framework for image denoising

1. 

School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China

2. 

Department of Mathematics, 358 Little Hall, PO Box 118105, Gainesville, FL 32611

Received  December 2013 Revised  June 2015 Published  February 2016

In this paper, we propose a unified variational framework for noise removal, which uses a combination of different orders of fractional derivatives in the regularization term of the objective function. The principle of the combination is taking the order two or higher derivatives for smoothing the homogeneous regions, and a fractional order less than or equal to one to smooth the locations near the edges. We also introduce a novel edge detector to better detect edges and textures. A main advantage of this framework is the superiority in dealing with textures and repetitive structures as well as eliminating the staircase effect. To effectively solve the proposed model, we extend the first-order primal dual algorithm to minimize a functional involving fractional-order derivatives. A set of experiments demonstrates that the proposed method is able to avoid the staircase effect and preserve accurately edges and structural details of the image while removing the noise.
Citation: Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27
References:
[1]

J. Bai and X. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492-2502. doi: 10.1109/TIP.2007.904971.

[2]

A. Chambolle and P. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188. doi: 10.1007/s002110050258.

[3]

T. F. Chan, S. Esedoglu and F. E. Park, Image decomposition combining staircase reduction and texture extraction, Journal of Visual Communication and Image Representation, 18 (2007), 464-486. doi: 10.1016/j.jvcir.2006.12.004.

[4]

T. F. Chan, S. Esedoglu and F. E. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, in Image Processing (ICIP), 2010 17th IEEE International Conference on, (2010), 4137-4140. doi: 10.1109/ICIP.2010.5653199.

[5]

T. Chan, A. Marquina and P. and Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516. doi: 10.1137/S1064827598344169.

[6]

N. Engheta, On the role of fractional calculus in electromagnetic theory, IEEE Antennas Propagat. Mag., 39 (1997), 35-46.

[7]

P. Guidotti and K. Longo, Two enhanced fourth order diffusion models for image denoising, J. Math. Imaging Vis., 40 (2011), 188-198. doi: 10.1007/s10851-010-0256-9.

[8]

X. Hu and Y. Li, A new variational model for image denoising based on fractional-order derivative, in IEEE 2012 International Conference on Systems and Informatics, (2012), 1820-1824. doi: 10.1109/ICSAI.2012.6223398.

[9]

F. Li, C. Shen, J. Fan and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image R., 18 (2007), 322-330. doi: 10.1016/j.jvcir.2007.04.005.

[10]

S. C. Liu and S. Chang, Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification, IEEE Trans. Image Process., 6 (1997), 1176-1184.

[11]

A. Loverro, Fractional Calculus: History, Definitions and Applications for the Engineer, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering, 2004.

[12]

M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590. doi: 10.1109/TIP.2003.819229.

[13]

M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vision, 66 (2006), 5-18. doi: 10.1007/s11263-005-3219-7.

[14]

B. Ninness, Estimation of $1/f$ noise, IEEE Trans. Inf. Theory, 44 (1998), 32-46. doi: 10.1109/18.650986.

[15]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639. doi: 10.1109/34.56205.

[16]

I. Podlubny, Fractional Differential Equations, Academic Press, 1999.

[17]

W. Ring, Structural properties of solutions to total variation regularization problems, Math. Model. Numer. Anal., 34 (2000), 799-810. doi: 10.1051/m2an:2000104.

[18]

B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, in Fractional Calculus and Its Applications, Lecture Notes in Math., 457, Springer-Verlag, New York, 2006, 1-36. doi: 10.1007/BFb0067096.

[19]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica. D., 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.

[20]

M. Unser and Splines, A perfect fit for signal and image processing, IEEE Signal Process. Mag., 16 (1999), 22-38. doi: 10.1109/79.799930.

[21]

M. Unser and T. Blu, Fractional splines and wavelets, SIAM Rev., 42 (2000), 43-67. doi: 10.1137/S0036144598349435.

[22]

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861.

[23]

J. Weickert, Anisotropic Diffusion in Image Processing, Stutgart, B.G. Teubner, 1998.

[24]

Y. You and M. Kaveh, Fourth order partial differential equations for noise removal, IEEE Trans. Image Process., 9 (2000), 1723-1730. doi: 10.1109/83.869184.

[25]

J. Zhang and Z. Wei, Fractional variational model and algorithm for image denoising, IEEE Fourth International Conference on Natural Computation, 5 (2008), 524-528. doi: 10.1109/ICNC.2008.172.

[26]

J. Zhang and Z. Wei, A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising, Applied Mathematical Modelling, 35 (2011), 2516-2528. doi: 10.1016/j.apm.2010.11.049.

[27]

J. Zhang, Z. Wei and L. Xiao, Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vis., 43 (2012), 39-49. doi: 10.1007/s10851-011-0285-z.

show all references

References:
[1]

J. Bai and X. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492-2502. doi: 10.1109/TIP.2007.904971.

[2]

A. Chambolle and P. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188. doi: 10.1007/s002110050258.

[3]

T. F. Chan, S. Esedoglu and F. E. Park, Image decomposition combining staircase reduction and texture extraction, Journal of Visual Communication and Image Representation, 18 (2007), 464-486. doi: 10.1016/j.jvcir.2006.12.004.

[4]

T. F. Chan, S. Esedoglu and F. E. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, in Image Processing (ICIP), 2010 17th IEEE International Conference on, (2010), 4137-4140. doi: 10.1109/ICIP.2010.5653199.

[5]

T. Chan, A. Marquina and P. and Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516. doi: 10.1137/S1064827598344169.

[6]

N. Engheta, On the role of fractional calculus in electromagnetic theory, IEEE Antennas Propagat. Mag., 39 (1997), 35-46.

[7]

P. Guidotti and K. Longo, Two enhanced fourth order diffusion models for image denoising, J. Math. Imaging Vis., 40 (2011), 188-198. doi: 10.1007/s10851-010-0256-9.

[8]

X. Hu and Y. Li, A new variational model for image denoising based on fractional-order derivative, in IEEE 2012 International Conference on Systems and Informatics, (2012), 1820-1824. doi: 10.1109/ICSAI.2012.6223398.

[9]

F. Li, C. Shen, J. Fan and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image R., 18 (2007), 322-330. doi: 10.1016/j.jvcir.2007.04.005.

[10]

S. C. Liu and S. Chang, Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification, IEEE Trans. Image Process., 6 (1997), 1176-1184.

[11]

A. Loverro, Fractional Calculus: History, Definitions and Applications for the Engineer, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering, 2004.

[12]

M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590. doi: 10.1109/TIP.2003.819229.

[13]

M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vision, 66 (2006), 5-18. doi: 10.1007/s11263-005-3219-7.

[14]

B. Ninness, Estimation of $1/f$ noise, IEEE Trans. Inf. Theory, 44 (1998), 32-46. doi: 10.1109/18.650986.

[15]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639. doi: 10.1109/34.56205.

[16]

I. Podlubny, Fractional Differential Equations, Academic Press, 1999.

[17]

W. Ring, Structural properties of solutions to total variation regularization problems, Math. Model. Numer. Anal., 34 (2000), 799-810. doi: 10.1051/m2an:2000104.

[18]

B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, in Fractional Calculus and Its Applications, Lecture Notes in Math., 457, Springer-Verlag, New York, 2006, 1-36. doi: 10.1007/BFb0067096.

[19]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica. D., 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.

[20]

M. Unser and Splines, A perfect fit for signal and image processing, IEEE Signal Process. Mag., 16 (1999), 22-38. doi: 10.1109/79.799930.

[21]

M. Unser and T. Blu, Fractional splines and wavelets, SIAM Rev., 42 (2000), 43-67. doi: 10.1137/S0036144598349435.

[22]

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861.

[23]

J. Weickert, Anisotropic Diffusion in Image Processing, Stutgart, B.G. Teubner, 1998.

[24]

Y. You and M. Kaveh, Fourth order partial differential equations for noise removal, IEEE Trans. Image Process., 9 (2000), 1723-1730. doi: 10.1109/83.869184.

[25]

J. Zhang and Z. Wei, Fractional variational model and algorithm for image denoising, IEEE Fourth International Conference on Natural Computation, 5 (2008), 524-528. doi: 10.1109/ICNC.2008.172.

[26]

J. Zhang and Z. Wei, A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising, Applied Mathematical Modelling, 35 (2011), 2516-2528. doi: 10.1016/j.apm.2010.11.049.

[27]

J. Zhang, Z. Wei and L. Xiao, Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vis., 43 (2012), 39-49. doi: 10.1007/s10851-011-0285-z.

[1]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[2]

Kai Wang, Deren Han. On the linear convergence of the general first order primal-dual algorithm. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021134

[3]

Zhiguang Zhang, Qiang Liu, Tianling Gao. A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. Inverse Problems and Imaging, 2021, 15 (6) : 1451-1469. doi: 10.3934/ipi.2021018

[4]

Huan Han. A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Problems and Imaging, 2018, 12 (6) : 1263-1291. doi: 10.3934/ipi.2018053

[5]

Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations and Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355

[6]

Jaydeep Swarnakar. Discrete-time realization of fractional-order proportional integral controller for a class of fractional-order system. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 309-320. doi: 10.3934/naco.2021007

[7]

Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106

[8]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[9]

Ansgar Jüngel, Ingrid Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 861-877. doi: 10.3934/dcdsb.2007.8.861

[10]

Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225

[11]

Xiaoling Guo, Zhibin Deng, Shu-Cherng Fang, Wenxun Xing. Quadratic optimization over one first-order cone. Journal of Industrial and Management Optimization, 2014, 10 (3) : 945-963. doi: 10.3934/jimo.2014.10.945

[12]

Simone Fiori. Synchronization of first-order autonomous oscillators on Riemannian manifolds. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1725-1741. doi: 10.3934/dcdsb.2018233

[13]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[14]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[15]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[16]

Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial and Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139

[17]

Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327

[18]

Ying Wen, Jiebao Sun, Zhichang Guo. A new anisotropic fourth-order diffusion equation model based on image features for image denoising. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022004

[19]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[20]

Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (388)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]